• Title/Summary/Keyword: 산업원료물질

Search Result 154, Processing Time 0.033 seconds

A Study on Acid Recovering Process by Neutralization and Water-Splitting Electrodialysis (WSED) (중화법과 전기투석에 의한 산회수 공정연구)

  • Lee, Hong Joo;Moon, Seung-Hyeon;Park, Sung-Kook;Chun, Hee-Dong
    • Clean Technology
    • /
    • v.3 no.2
    • /
    • pp.74-86
    • /
    • 1997
  • Recently the treatment of industrial wastes by membrane processes has drawn much attention due to increasing demands for clean technology. In the process investigated in this study, metal species in the acidic wastes are precipitated as metal hydroxide forms in a neutralization tank, and acid and base solutions are regenerated by water-splitting electrodialysis(WSED) to be reused in the process. Material balances of the processes for treating pickle liquor and mixed wastewater were calculated to explain conceptual design of the process. Experiments for neutralization precipitation with KOH and NaOH for mixed wastewater were carried out to precipitate metal hydroxide and to recover salt solution as supernatant. Also WSED of the salt solutions producing acid and base was tested in 2 or 3 compartment stacks using KCl and NaCl to investigate the effects of stack configurations on the WSED performance.

  • PDF

Isolation of Protease Producing Microorganisms (단백질 분해효소 생산 균주 분리)

  • Kim, Gi Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.4
    • /
    • pp.265-270
    • /
    • 2014
  • Protease producing microorganisms were isolated from many kinds of food waste and fermented foods, which contains high amount and variable kinds of degraded substances. Several microorganisms were identified by 16S rRNA full sequencing analysis methods. The activity of protease was analyzed and identified in variable conditions for the application. For industrial use for biowaste treatment some proteases were isolated, identified and selected from microbial cells. And the tests were carried for the further use. The protein degrading activity at low temperature is useful for the treatment of organic waste, which contains much proteins. By the protein degradation process the organic waste can be utilized in variable fields, for example from feedstuff supplement to fertilizer for agriculture. Bacterial cells with protease activity at low temperature were isolated and identified. The optimal conditions for microbial cultivation and protease production were studied.

대두단백질 가수분해물의 쓴맛 펩타이드 구조와 특징

  • Lee, Cheol-Ho
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2001.06a
    • /
    • pp.3-41
    • /
    • 2001
  • 단백질의 부분 가수분해는 산성 음료에서의 용해도 증가, 환자들의 소화력과 알러지 내성의 개선, 다른 기능적 특성의 개발 등을 위하여 식품산업에 널리 이용되고 있다. 그러나 우유 단백질이나 대두 단백질과 같은 몇 가지 단백질들은 가수분해에 의하여 강한 쓴맛을 형성한다, 단백질 가수분해물의 쓴맛에 관한 연구는 1950년대 초에 시작되었으며, 여러 가지 원료로부터 쓴맛물질이 분리되었다. 이들 단백질 가수분해물의 쓴맛 물질은 올리고펩타이드로 알려져 있으며, 펩타이드 분자를 구성하는 소수성 아미노산의 존재와 밀접한 관계가 있는 것으로 보고되고 있다. 본 연구에서는 최근에 발달된 분석기술과 생명공학적 기법으로 E. coli에서 생산한 콩 단백질 단일 subunit를 이용하여 효소적 가수분해물의 분자구조를 확인하고자 하였다. 탈지대두박으로부터 115 glycinin와 E.coli떼서 발현된 proglycinin을 각각 90%, 97%의 정제도로 분리하여 이들 단백질을 trypsin으로 각각 가수분해하였다. 115 glycinin은 효소/기질 비 3%에서 4시간 가수분해에 의해 $14.0{\times}10^{-5}$ M quinine-HCI equivalent의 강한 쓴맛을 나타내었으며, 12%의 가수분해도(DH)를 나타내었다. 대두 단백질의 쓴맛 성분을 확인 위하여 이미 아미노산 서열이 밝혀진 11S glycinin과 proglycinin 가수분해물에서 GP-HPLC, $C_{18}$ RP-HPLC 등을 통하여 쓴맛 peptide들을 분리하였다. 각각의 분획은 다시 21개의 peptide로 분리되어 그 서열이 결정되었으며 이중 RP와 GI는 이미 알려진 쓴맛 dipeptide였고, LAGNQEQE, SAEFG, NALPE, KLHENIAR, GMIYPG 등이 주된 쓴맛 Peptide로 확인되었다. 이들은 11S glycinin의 5개의 subunit 중에서 그 위치가 확인되었다. Proglycinin 가수분해물에서도 11S glycinin과 같은 방법으로 7개의 쓴맛 peptide가 분리되었다. 이들은 $A_{1a}B_{1b}$의 아미노산 서열 중에서 37-42, 103-110, 164-167, 323-327, 367-373의 위치에 분포하고 있었으며, NALKPD, IYPGCPST, SlDT, HNIGQT, NAMFVPH의 서열을 나타내었다. 분리된 쓴맛 peptide 중에서 가장 쓴 두 분회의 peptide를 합성하여 관능 검사한 결과, NALPE는 매우 쓴맛을 내는 peptide로 확인되었다.

  • PDF

Development of High Functional Collagen Peptide Materials using Skate Skins (홍어껍질을 이용한 고기능성 콜라겐 펩타이드 소재 개발)

  • Baek, Jang-Mi;Kang, Keon-Hee;Kim, Sang-Ho;Noh, Jeong-Sook;Jeong, Kap-Seop
    • Journal of Environmental Science International
    • /
    • v.25 no.4
    • /
    • pp.579-588
    • /
    • 2016
  • The aim of this study was to investigate and development collagen peptide materials from skate skin. Protein and fat content of collagen peptide showed about 95% and 0.1%, respectively. Average molecular weight of collagen peptide was measured as 1,015. In the analysis of amino acid, glycine and hydroxy proline content in collagen peptide was 19.32% and 16.25%, respectively, showing a typical characteristics of the collagen peptide. In obese db/db mice ingested 500 mg/day of collagen peptide for 18 days, the amounts of food and water intake were decreased considerably, contents of triglyceride, total cholesterol were decreased significantly in white adipose tissue of db/db mice. The final yield of collagen peptide was 17.23% in the optimized process for mass production. These results indicate that collagen peptide from skate skin may serve as candidates of fat reduction in adipose tissue and could be used as functional food and cosmetic ingredients.

Agricultural application of natural polymers chitin and chitosan (천연고분자 키틴·키토산의 농업적 활용)

  • Jung, Woo-Jin
    • Food Science and Industry
    • /
    • v.53 no.1
    • /
    • pp.33-42
    • /
    • 2020
  • In accordance with the recent trend of environmentally friendly agricultural policy, product registration of agricultural chitosan among the organic materials has been displayed in various forms such as soil improving agent, crop growth, and pest control. Chitin production industry is expected to bring competitiveness by producing low-quality and low-cost chitin for agriculture, rather than high-quality and high-cost for food, medical products. Since there are various soil microorganisms that can decompose chitin and chitosan in farm soil where crops are produced, it can be applied usefully to agricultural sites suitably for crop growth and pest control using chitin and chitosan as substrates. The purpose of this study is to compare and analyze the registration status of organic materials companies using chitin and chitosan raw materials in the organic materials information system of the NAQS, and to provide an opportunity to further expand the agricultural use of domestic chitin and chitosan.

Measurement and Prediction of Fire and Explosion Properties of n-Ethylanilne (노말에틸아닐린의 화재 및 폭발 특성치의 측정 및 예측)

  • Ha, Dong-Myeong
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.474-478
    • /
    • 2018
  • For process safety, fire and explosion characteristics of combustible materials handled at industrial fields must be available. The combustion properties for the prevention of the accidents in the work place are flash point, fire point, explosion limit, and autoignition temperature (AIT) etc.. However, the combustion properties suggested in the Material Safety Data Sheet (MSDS) are presented differently according to the literatures. The accurate combustion properties are necessary to safely treatment, transportation and handling of flammable substances. In the chemical industries, n-ethylaniline which is widely used as a raw material of intermediate products and rubber chemicals was selected. For safe handling of n-ethyl aniline, the flash point, the fire point and the AIT were measured. The lower explosion limit (LEL)of n-ethylaniline was calculated using the lower flash point obtained in the experiment. The flash points of n- ethylaniline by using the Setaflash and Pensky-Martens closed-cup testers measured $77^{\circ}C$ and $82^{\circ}C$, respectively. The flash points of n-ethylaniline using the Tag and Cleveland open cup testers are measured $85^{\circ}C$ and $92^{\circ}C$, respectively. The AIT of the measured n-ethyl aniline by the ASTM E659 apparatus was measured at $396^{\circ}C$. The LEL of n-ethylaniline measured by Setaflash closed-cup tester at $77^{\circ}C$ was calculated to be 1.02 vol%. In this study, it was possible to predict the LEL by using the lower flash point of n-ethylaniline measured by closed-cup tester. The relationship between the ignition temperature and the ignition delay time of the n-ethylaniline proposed in this study makes it possible to predict the ignition delay time at different ignition temperatures.

Extraction of ${\beta}$-carotene from Ascidian Tunic [Halocynthia roretzi] using Supercritical Carbon Dioxide and Co-solvent (초임계 이산화탄소를 이용만 우렁쉥이 껍질로부터 ${\beta}$-carotene 추출)

  • Kang, In-Sook;Youn, Hyun-Seok;Park, Ji-Yeon;Chun, Byung-Soo
    • KSBB Journal
    • /
    • v.21 no.3
    • /
    • pp.194-198
    • /
    • 2006
  • Dried raw Ascidians(Halocynthia roretzi) shells harvested from fish farms in southern coast area in Korea were used to extract ${\beta}$-carotene using supercritical carbon dioxide($SCO_2$) and with ethanol as a co-solvent at the range of temperatures and pressures, from 25 to $65^{\circ}C$ and 100 to 350 bar respectively. The size of the dried Ascidians shells was around $850{\mu}m$. The system used this study was a semi-batch flow type high pressure unit. The efficiency of ${\beta}$-carotene extraction using $SCO_2$ with and without co-solvent, ethanol, influenced to pressure and temperature changes. The highest solubility of ${\beta}$-carotene in $SCO_2$ was 1.35 mg/g for ${\beta}$-carotene at $35^{\circ}C$ and 350 bar. With addition of 2(v/v%) ethanol the recovery of ${\beta}$-carotene was 93%. As a result of using n-hexane and methanol for rinse, at $35^{\circ}C$ and 350 bar the amount of ${\beta}$-carotene by methanol rinse was 5 times higher than that of n-hexane rinse.

A study on the HTS-NAA/γ-spectrometry for the analysis of alpha-particle emitting impurities in silica (고순도 실리카중 알파방출 불순물 분석을 위한 HTS-NAA/γ-spectrometry 연구)

  • Lee, Kil Yong;Yoon, Yoon Yeol;Cho, Soo Young;Yang, Myung Kwon;Shim, Sang Kwon;Kim, Yongje;Chung, Yong Sam
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.5-12
    • /
    • 2005
  • It has been established that soft error of high precision electronic circuits can be induced by alpha particles emitted from the naturally occurring radioactive impurities such as U, and Th. As the electronic circuits have recently become lower dimension and higher density, these alpha-particle emitting radioactive impurities have to be strictly controlled. The aim of this study is to develop of NAA (Neutron Activation Analysis) and gamma-spectrometry to improve the analytical sensitivity and precision of U and Th. A new NAA method has been established using the HTS (Hydrulic transfer system) irradiation facility which has been used to produce radioisotopes for industries and medicines instead of the PTS (pneumatic transfer system) irradiation facility which has been used in general NAA. When the ultratrace impurities have to be analyzed by NAA, background gamma-ray spectra induced from $^{222}Rn$ and its progenies in air is serious problem. This unstable background has been eliminated or stabilized by the use of a nitrogen purging system. Ultra trace amounts of U (0.1 ng/g) and Th (0.01 ng/g) in high purity silica used for EMC could be analyzed by the use of HTS-NAA and low background gamma-spectrometry.

A Case of Workers' Exposure Reductions for Chemicals in a Polyurethane Pad Process through the Substitution of Raw Materials (폴리우레탄 패드 공정에서의 원료물질 대체에 따른 근로자 노출저감 사례)

  • Jang, Jae-Kil;Park, Hyunhee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.3
    • /
    • pp.281-292
    • /
    • 2014
  • Objectives: The aim of this case study is to verify the chemical exposure reductions for various chemicals by substituting the ingredients of raw materials in a polyurethane(PU) foaming industry. The PU foaming process was making various passenger car seats from chemicals such as toluene diisocinate(TDI), methylene bisphenyl isocyanate(MDI) and polyols. Methods: Basic process data and workers' health effects could be gathered by interviewing managers and reviewing previous exposure monitoring data. Amine, aldehyde and isocyanate chemicals were analyzed following the NIOSH-NMAM. Area sampling methods rather than personal sampling were introduced for this field investigation. Results: Two amines, triethylene diamine(TEDA) and N,N,N',N'-Tetramethyl-1,6- hexanediamine(TMHDA) were identified in raw polyol, cured PU foam and air. The average concentrations of TEDA and TMHDA showd less than 1 ppm by area sampling; however, that caused halovision among workers in PU-PAD process. Aldehydes and isocyanates were detected in the air while the concentrations were relatively low compare to occupational exposure limits. Successful raw material substitution from nonreactive amine to reactive amine could reduces air-borne amine and aldehyde levels by about 70%. Halovision had been disappeared successfully in the process. Conclusions: Several amines caused halovision among workers in PU-PAD process, especially during summer season in spite of relatively low levels. Combination of reactive amines into urethane foam could reduced vapor generation into air, which resulted in the elimination of eye troubles in the process.

Pyrolysis Characteristics of Hemp By-products (Stem, Root and Bast) (헴프 부산물의 열분해 특성 연구)

  • Choi, Gyeong-Ho;Kim, Seung-Soo;Kim, Jinsoo;Joo, Dong-Sik;Lee, Janggook
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.508-513
    • /
    • 2011
  • Hemp is known as one of the most productive and useful plants, which grows quickly in a moderate climate with only moderate water and fertilizer. Traditionally in Korea, hemp bast is used to natural fibres, and remaining such as stem and root is treated as waste. Those of hemp by-products can be transformed to bio fuel such as bio-oil and activated carbon. To understand pyrolysis characteristics, thermogravimetric analysis were carried out in TGA, in which hemp by-products were mostly decomposed at the temperature range of $270{\sim}370^{\circ}C$. The corresponding kinetic parameters including activation energy and pre-exponential factor were determined by differential method over the degree of conversions. The values of activation energies for pyrolysis were increased as the conversion increased from 10 to 90%.