Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.5.508

Pyrolysis Characteristics of Hemp By-products (Stem, Root and Bast)  

Choi, Gyeong-Ho (Department of Chemical Engineering, Kangwon National University)
Kim, Seung-Soo (Department of Chemical Engineering, Kangwon National University)
Kim, Jinsoo (Department of Chemical Engineering, Kyung Hee University)
Joo, Dong-Sik (Department of Food Service Industry, Hanzhong University)
Lee, Janggook (Department of Mechanical Automative Engineering, Hanzhong University)
Publication Information
Applied Chemistry for Engineering / v.22, no.5, 2011 , pp. 508-513 More about this Journal
Abstract
Hemp is known as one of the most productive and useful plants, which grows quickly in a moderate climate with only moderate water and fertilizer. Traditionally in Korea, hemp bast is used to natural fibres, and remaining such as stem and root is treated as waste. Those of hemp by-products can be transformed to bio fuel such as bio-oil and activated carbon. To understand pyrolysis characteristics, thermogravimetric analysis were carried out in TGA, in which hemp by-products were mostly decomposed at the temperature range of $270{\sim}370^{\circ}C$. The corresponding kinetic parameters including activation energy and pre-exponential factor were determined by differential method over the degree of conversions. The values of activation energies for pyrolysis were increased as the conversion increased from 10 to 90%.
Keywords
thermogravimetric analysis; pyrolysis; biomass; hemp by-products;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 http://en.wikipedia.org/wiki/Hemp
2 S. Oqujai and R. A. Shanks, Polym. Degrad. Stabil., 89, 327 (2005).   DOI   ScienceOn
3 F. Collet, M. Bart, L. Serres, and J. Miriel, Constr. Build. Mater., 22, 1271 (2008).   DOI   ScienceOn
4 S. B. Stankovic, D. Popovic, and G. B. Poparic, Polym. Test., 27, 41 (2008).   DOI   ScienceOn
5 X.-X. Feng, J.-Y. Chen, and H.-P. Zhang, J. Appl. Polym. Sci., 108, 4058 (2008).   DOI   ScienceOn
6 C. Vasiliu-Oprea, Polym.-Plast. Technol. Eng., 32, 181 (1993).   DOI   ScienceOn
7 B. K. Taseli, Afr. J. Biotechnol., 7, 286 (2008).
8 J. M. Rosas, J. Bedia, J. Rodriguez-Mirasol, and T. Cordero, Fuel, 88, 19 (2009).   DOI   ScienceOn
9 F. Correia, D. N. Roy, and K. Goel, J. Wood Chem. Technol., 21, 97 (2001).   DOI   ScienceOn
10 B. de Groot, J. C. van der Kolk, P. van der Meer, J. E. G. van Dam, and K. van't Riet, J. Wood Chem. Technol., 17, 187 (1997).   DOI   ScienceOn
11 A. Richini, M. Le Troedec, C. Peyrotout, and A. Smith, J. Appl. Polym. Sci., 112, 226 (2009).   DOI   ScienceOn
12 C. Paduranru and L. Tofan, Environ. Eng. Manage. J., 7, 687 (2008).
13 P. T. Williams and A. R. Reed, J. Anal. Appl. Pyrol., 71, 971 (2004).   DOI   ScienceOn
14 A. R. Reed and P. T. Williams, Int. J. Energy Res., 28, 131 (2004).   DOI   ScienceOn
15 J. Z. Xu, M. Gao, H. Z. Guo, X. L. Liu, Z. Li, H. Wang, and C. M. Tian, J. Fire Sci., 20, 227 (2002).   DOI   ScienceOn
16 Annual Book of ASTM Standard (1997).
17 Y.-H. Park, J. Kim, S.-S. Kim, and Y.-K. Park, Bioresource Technol., 100, 400 (2009).   DOI   ScienceOn
18 S.-S. Kim and F. A. Agblevor, Waste Manage., 27, 135 (2007).   DOI   ScienceOn
19 A. Demirbas, Fuel, 76, 431 (1997).   DOI   ScienceOn
20 H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, Fuel, 86, 1781 (2007).   DOI   ScienceOn
21 P. Gu, R. K. Hessley, and W.-P. Pan, J. Anal. Appl. Pyrol., 24, 147 (1992).   DOI   ScienceOn
22 F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, Polym. Degrad. Stabil., 93, 90 (2008).   DOI   ScienceOn
23 S. Ouajai and R. A. Shanks, Polym. Degrad. Stabil., 89, 327 (2005).   DOI   ScienceOn