• Title/Summary/Keyword: 산소 플라즈마 처리

Search Result 193, Processing Time 0.027 seconds

산소 플라즈마로 처리한 전도성 투명 BZO(ZnO:B)박막에 대한 전기적 특성

  • Gang, Jeong-Uk;Yu, Ha-Jin;Son, Chang-Gil;Jo, Won-Tae;Park, Sang-Gi;Choe, Eun-Ha;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.477-477
    • /
    • 2010
  • 태양전지용 TCO(Transfer Conductivity Oxide)는 가시광선 영역에서 높은 광 투과도(optical transmittance), 낮은 저항(resistivity), 우수한 박막 표면 거칠기(roughness) 등의 특성이 요구된다. 현재 가장 많이 사용되는 투명전극은 ITO(Indium Tin Oxide)가 보편적이다. 하지만 ITO에 사용되는 원료 재료인 In이 상대적으로 열적 안정성이 낮아 제조과정에서 필수적으로 수반되는 열처리가 제한적이며, 높은 원료 단가로 인하여 경제적인 측면에서 약점으로 지적되고 있다. 이러한 ITO 투명전극의 대체 재료로서 최근 ZnO 박막의 연구가 활발히 이루어지고 있다. MOCVD(Metal-Organic chemical vapor deposition)로 Soda lime glass 기판위에 약 900nm의 두께로 증착한 BZO(Boron-zinc-oxide)박막을 수소 플라즈마 처리공정을 한 뒤 산소 플라즈마를 이용하여 재처리 하였다. 산소 플라즈마 처리 공정은 RIE(Reactive Ion Etching)방식의 플라즈마 처리 장치를 사용하였고 공정 조건은 13.56 MHz의 RF주파수를 사용하여 RF 전력, 압력, 기판 온도 등을 변화시켜 BZO 박막의 전기적 특성을 측정 및 분석하였다.

  • PDF

Characteristics of Low Dielectric Constant SiOF Thin Films with Post Plasma Treatment Time (플라즈마 후처리 시간에 따른 저유전율 SiOF 박막의 특성)

  • Lee, Seok Hyeong;Park, Jong Wan
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.267-267
    • /
    • 1998
  • The fluorine doped silicon oxide (SiOF) intermetal dielectric (IMD) films have been of interest due to their lower dielectric constant and compatibility with existing process tools. However instability issues related to bond and increasing dielectric constant to water absorption when the SiOF films was exposured to atmospheric ambient. Therefore, the purpose of this research is to study the effect of post oxygen plasma treatment on the resistance of moisture absorption and reliability of SiOF film. Improvement of moisture absorption resistance of SiOF film is due to the forming of thin SiO₂layer at the SiOF film surface. It is thought that the main effect of the improvement of moisture absorption resistance was densification of the top layer and reduction in the number of Si-F bonds that tend to associate with OH bonds. However, the dielectric constant was increased when plasma treatment time is above 5 min. In this study, therefore, it is thought that the proper plasma treatment time is 3 min when plasma treatment condition is 700 W of microwave power, 3 mTorr of process pressure and 300℃ of substrate temperature.

Surface Characteristics on Semi-conductive Silicone Rubber by Plasma Modification (플라즈마 처리에 따른 반도전성 실리콘 고무의 표면특성 변화)

  • Youn, Bok-Hee;Kim, Dong-Wook;Jeon, Seung-Ik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.219-220
    • /
    • 2005
  • 본 논문은 산소 플라즈마 처리에 따른 반도전성 실리콘 고무의 표면특성 변화를 조사하였다. 실리콘 고무는 각종 초고압 전력기기에서 절연부품으로 많이 사용되어 지고 있다. 하지만, 실리콘 고무가 가지고 있는 고유의 특성 때문에 반도전성 부품과 절연성 부품간의 계면이 접착이 잘 되지 않는 문제점이 나타난다. 이를 위해서 접착제를 사용하거나 표면 거칠기를 변화시키는 개질을 하기도 하지만, 이는 새로운 계면을 형성하거나 약점을 만드는 문제가 있다. 이를 위해 반도전성 실리콘 고무 표면을 산소 플라즈마 개질시켜, 표면을 활성화 시키는 역할과 표면을 균일하게 에칭시켜 기계적 interlocking 메커니즘으로 접착력을 향상시킬 수 있다. 본 실험에서는 산소 플라즈마 처리에 따른 반도전성 실리콘 고무의 표면을 표면에너지. XPS로 기본적인 표면특성을 조사하였다. 실험 결과, 단시간의 산소플라즈마 처리로 표면에 다수의 관능기가 관찰되었다. 이러한 산화층은 실록산 결합쇄가 산화된 실리카 유사층으로 밝혀졌다. 이로써 절연부와 접착 용이성이 기대되었으며, 벌크적인 실리콘 고무의 특성변화 없이 표면개질 만으로 우수한 계면특성을 얻을 수 있다.

  • PDF

Gas Adsorption Characteristics of by Interaction between Oxygen Functional Groups Introduced on Activated Carbon Fibers and Acetic Acid Molecules (활성탄소섬유에 도입된 산소작용기와 초산 분자와의 상호작용에 따른 가스 흡착 특성)

  • Song, Eun Ji;Kim, Min-Ji;Han, Jeong-In;Choi, Ye Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.160-166
    • /
    • 2019
  • In this study, oxygen functional groups were introduced on activated carbon fibers (ACFs) by oxygen plasma treatment to improve the adsorption performance on an acetic acid which is a sick house syndrome induced gas. The active species was generated more as the flow rate of the oxygen gas increased during the plasma treatment. For this reason, the specific surface area (SSA) of the ACFs decreased with much more physical and chemical etching. In particular, the SSA of the sample (A-O60) injected with an oxygen gas flow rate of 60 sccm was reduced to about $1.198m^2/g$, which was about 6.95% lower than that of the untreated samples. On the other hand, the oxygen content introduced into the surface of ACFs increased up to 35.87%. Also, the adsorption performance on the acetic acid gas of the oxygen plasma-treated ACFs was improved by up to 43% compared to that of using the untreated ACFs. It is attributed to the formation of the hydrogen bonding due to the dipole moments between acetic acid molecules and oxygen functional groups such as O=C-O introduced by the oxygen plasma treatment.

Cesium Ions Adsorption of Activated Carbon Treated by Oxygen Plasma (산소 플라즈마 처리된 활성탄소의 세슘 이온 흡착)

  • Ha, Seongmin;Kwak, Cheol Hwan;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.38-43
    • /
    • 2022
  • The effect of introducing oxygen functional groups by oxygen plasma treatment of activated carbon on adsorption properties of cesium ions was investigated. During the oxygen plasma treatment, the frequency, power, and oxygen gas flow rates were fixed at 100 kHz, 80 W, and 60 sccm, respectively, while the reaction time was varied. Under the experimental conditions, the amount of cesium ion adsorption increased as the content of oxygen groups on C-O-C and O=C-O bonds increased when the reaction time with oxygen gas was 10 minutes. However, when the reaction time increased to 15 minutes, the oxygen functional group content decreased resulting in the decrease of the adsorbed cesium ion amount. On the other hand, unlike the oxygen content of the surface-treated activated carbon, the specific surface area and pore properties were hardly affected by the oxygen plasma reaction time. As a result, the oxygen plasma-treated activated carbon improved the cesium ion removal rate by up to 97.3% compared to that of the untreated activated carbon. This is considered to be due to the content of oxygen groups on C-O-C and O=C-O bonds introduced on the surface of the activated carbon through oxygen plasma treatment.

Effects of Low Pressure and Atmospheric Pressure Plasma Treatment on Contact Angle of Polycarbonate Surface (저압 및 대기압 플라즈마 처리를 통한 폴리카보네이트의 접촉각 변화특성 비교)

  • Won, Dong Su;Kim, Tae Kyung;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.98-103
    • /
    • 2010
  • The effect of plasma treatment on surface characteristics of polycarbonate (PC) films was investigated using low pressure plasma and atmospheric pressure plasma with oxygen and argon. Untreated PC has a contact angle of $82.31^{\circ}$ with de-ionized water which reduced to $9.17^{\circ}$ as the lowest value after being treated with a low pressure plasma treatment with oxygen. Increase of delivered powers such as RF and AC with a high frequency and gas flow rates was not effective to reduce contact angles dramatically but gave the trend of reducing gradually. The surface of PC treated with plasma shows a low contact angle but the contact angle increases rapidly according to the exposure time in air ambient. Oxygen plasma was more effective to generate the polar functional group regardless of the type of plasma. Conclusively, a low plasma treatment with oxygen is more recommendable when the hydrophilic surface of PC is required.

Influence of Inductively Coupled Plasma on Surface Properties of Polycarbonate (유도 결합형 저온 플라즈마 처리에 따른 폴리카보네이트 표면 특성 변화)

  • Won, Dong Su;Lee, Won Gyu
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.355-358
    • /
    • 2010
  • Inductively coupled low temperature plasmas with oxygen, argon, mixture of oxygen and argon, and nitrogen have been used to modify polycarbonate(PC) films at the various process conditions. All plasma treatments generally had a tendency to increase the surface roughness of PC regardless of process conditions. The treatment of oxygen plasma showed the highest value in the surface roughness and mostly enhanced the generation of oxygen containing polar groups as much as 43% in comparison of untreated PC. The contact angle of untreated PC decreased from $82.31^{\circ}$ to the lowest value of $9.17^{\circ}$ after oxygen plasma treatment. The increase of RF delivered power had an effect on the rapid reduction of contact angle, but gas flow rates did not effect to reduce contact angles so much.

Effect of Perovskite Surface Treatment Using Oxygen Atmospheric Pressure Plasma (산소분위기의 상압플라즈마를 이용한 페로브스카이트 표면 처리 효과)

  • Kim, Kyoung-Bo;Lee, Jongpil;Kim, Moojin
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.6
    • /
    • pp.146-153
    • /
    • 2021
  • Recently, research on perovskite semiconductor materials has been performed, and the evaluation of properties using surface treatment for this material is the basis for subsequent studies. We studied the results of surface treatment of perovskite thin films exposed to air for about 6 months by generating oxygen plasma with an atmospheric pressure plasma equipment. The reason for exposure for 6 months is that the perovskite thin film is made of organic and inorganic substances, so when exposed to air, the surface changes through reaction with oxygen or water vapor. Therefore, this change is to investigate whether it is possible to restore the original film. The surface shape and the ratio of elements were analyzed by varying the process time from 1 s to 1200 s in an oxygen plasma atmosphere. It was found that the crystal grains change over a process time of 5 s or more. In order to maintain the properties of the deposited film, it is the optimal process condition between 2 s and 5 s.

Changes in Work Function after O-Plasma Treatment on Indium-Tin-Oxide (산소 플라즈마로 처리한 ITO(Indium-Tin-Oxide)에 대한 일함수 변화)

  • 김근영;오준석;최은하;조광섭;강승언;조재원
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.171-175
    • /
    • 2002
  • The change in work function was studied on Indium-Tin-Oxide(ITO) surface after O-plasma treatment using $\gamma$-Focused ion Beam($\gamma$-FIB). As the surface of ITO experienced more O-plasma treatment, both the surface resistivity and the work function got higher. Auger Electron Spectroscopy identified the increase of oxygen as well as the decrease of Sn. The rise of work function and surface resistivity is considered to be due to the change in oxygen and Sn on the surface of ITO.

Effects of Oxygen Functional Groups introduced onto Activated Carbon Fibers on Gas Sensing Property of Chemical Warfare Agent (활성탄소섬유에 도입된 산소작용기가 유독성 화학작용제 감응특성에 미치는 영향)

  • Kim, Su Hyun;Kim, Min-Ji;Song, Eun Ji;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.719-725
    • /
    • 2019
  • In this study, activated carbon fibers were treated with oxygen plasma to investigate gas sensing properties of the dimethyl methylphosphonate (DMMP), which is a simulant gas of the chemical warfare agent, according to oxygen functional group contents. As the flow rate of oxygen plasma treatment increased, oxygen groups were introduced to the surface of activated carbon fibers from 6.90 up to 36.6%, increasing the -OH group which influences the DMMP gas sensing properties. However, as the flow rate of oxygen plasma increases, the specific surface area tends to decrease because etching on the surface of activated carbon fibers occurs due to active species generated during the oxygen plasma treatment. The resistance change rate of the DMMP gas sensor increased from 4.2 up to 25.1% as the oxygen plasma treatment flow rate increased. This is attributed to the hydrogen bonding between DMMP gas and introduced hydroxyl functional group on activated carbon fibers by the oxygen plasma treatment. Therefore, the oxygen plasma is considered to be one of the important surface treatment methods for detecting chemical warfare agents at room temperature.