Browse > Article
http://dx.doi.org/10.14478/ace.2021.1094

Cesium Ions Adsorption of Activated Carbon Treated by Oxygen Plasma  

Ha, Seongmin (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Kwak, Cheol Hwan (Institute of Carbon Fusion Technology (InCFT), Chungnam National University)
Lim, Chaehun (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Kim, Seokjin (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Lee, Young-Seak (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.33, no.1, 2022 , pp. 38-43 More about this Journal
Abstract
The effect of introducing oxygen functional groups by oxygen plasma treatment of activated carbon on adsorption properties of cesium ions was investigated. During the oxygen plasma treatment, the frequency, power, and oxygen gas flow rates were fixed at 100 kHz, 80 W, and 60 sccm, respectively, while the reaction time was varied. Under the experimental conditions, the amount of cesium ion adsorption increased as the content of oxygen groups on C-O-C and O=C-O bonds increased when the reaction time with oxygen gas was 10 minutes. However, when the reaction time increased to 15 minutes, the oxygen functional group content decreased resulting in the decrease of the adsorbed cesium ion amount. On the other hand, unlike the oxygen content of the surface-treated activated carbon, the specific surface area and pore properties were hardly affected by the oxygen plasma reaction time. As a result, the oxygen plasma-treated activated carbon improved the cesium ion removal rate by up to 97.3% compared to that of the untreated activated carbon. This is considered to be due to the content of oxygen groups on C-O-C and O=C-O bonds introduced on the surface of the activated carbon through oxygen plasma treatment.
Keywords
Activated carbon (AC); Oxygen plasma; Oxygen functional group; Cesium ion removal;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 R. E. Lee, C. H. Lim, M. J. Kim, and Y.-S. Lee, Acetic Acid Gas Adsorption Characteristics of Activated Carbon Fiber by Plasma and Direct Gas Fluorination., Appl. Chem. Eng., 32, 55-60 (2021).   DOI
2 K. Okajima, K. Ohta, and M. Sudoh, Capacitance behavior of activated carbon fibers with oxygen-plasma treatment, Electrochim. Acta, 50, 2227-2231 (2005).   DOI
3 B. C. Bai, H. U. Lee, C. W. Lee, Y.-S. Lee, and J. S. Im, N2 plasma treatment on activated carbon fibers for toxic gas removal: Mechanism study by electrochemical investigation, Chem. Eng. J., 306, 260-268 (2016).,   DOI
4 M. J. Jung, Y. Ko, K. H. Kim, and Y.-S. Lee, Oxyfluorination of pitch-based activated carbon fibers for high power electric double layer capacitor, Appl. Chem. Eng., 28, 638-644 (2017).   DOI
5 M. J. Jung, M. S. Park, S. Lee, and Y.-S. Lee, Effect of E-beam radiation with acid drenching on surface properties of pitch-based carbon fibers, Appl. Chem. Eng., 27, 319-324 (2016).   DOI
6 J. W. Lim, E. G. Jeong, M. J. Jung, S. L. Lee, and Y.-S. Lee, Preparation and Electrochemical Characterization of Activated Carbon Electrode by Amino-fluorination, Appl. Chem. Eng., 22, 405-410 (2011).
7 H. Yang, H. Li, J. Zhai, L. Sun, Y. Zhao, and H. Yu, Magnetic prussian blue/graphene oxide nanocomposites caged in calcium alginate microbeads for elimination of cesium ions from water and soil, Chem. Eng. J., 246, 10-19 (2014).   DOI
8 J. Wang and S. Zhuang, Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes, Nucl. Eng. Technol., 52, 328-336 (2020).   DOI
9 S. J. Park and K. D. Kim, Influence of anodic surface treatment of activated carbon on adsorption and ion exchange properties, J. Colloid Interface Sci., 218, 331-334 (1999).   DOI
10 Q. Tao, X. Zhang, K. Prabaharan, and Y. Dai, Separation of cesium from wastewater with copper hexacyanoferrate film in an electrochemical system driven by microbial fuel cells, Bioresour. Technol., 278, 456-459 (2019).   DOI
11 A. Nilchi, H. Atashi, A. H. Javid, and R.Saberi, Preparations of PAN-based adsorbers for separation of cesium and cobalt from radioactive wastes, Appl. Radiat. Isot., 65, 482-487 (2007).   DOI
12 Lalhmunsiama, J. G. Kim, S. S. Choi, and S. M. Lee, Recent Advances in Adsorption Removal of Cesium from Aquatic Environment, Appl. Chem. Eng., 29, 127-137 (2018).   DOI
13 E. J. Song, M. J. Kim, J. I. Han, Y. J. Choi, and Y.-S. Lee, Gas Adsorption Characteristics of by Interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019).   DOI
14 H. Deng, Y. Li, Y. Huang, X. Ma, L. Wu, and T. Cheng, An efficient composite ion exchanger of silica matrix impregnated with ammonium molybdophosphate for cesium uptake from aqueous solution, Chem. Eng. J., 286, 25-35 (2016).   DOI
15 B. Pakzadeh and J. R. Batista, Chromium removal from ion-exchange waste brines with calcium polysulfide, Water Res., 45, 3055-3064 (2011).   DOI
16 M. Kobya, Removal of Cr (VI) from aqueous solutions by adsorption onto hazelnut shell activated carbon: kinetic and equilibrium studies, Bioresour. Technol., 91, 317-321 (2004).   DOI
17 H. Nishita, D. Dixon, and K. H. Larson, Accumulation of Cs and K and growth of bean plants in nutrient solution and soil., Plant Soil., 17, 221-242 (1962).   DOI
18 A. Iwanade, N. Kasai, H. Hoshina, Y. Ueki, S. Saiki, and N. Seko, Hybrid grafted ion exchanger for decontamination of radioactive cesium in Fukushima Prefecture and other contaminated areas, J. Radioanal. Nucl. Chem, 293, 703-709 (2012).   DOI
19 H. A. Alamudy and K. Cho, Selective adsorption of cesium from an aqueous solution by a montmorillonit eprussian blue hybrid, Chem. Eng. J., 349, 595-602 (2018).   DOI
20 S. X. Liu, X. Chen, X. Y. Chen, Z. F. Liu, and H. L. Wan, Activated carbon with excellent chromium (VI) adsorption performance prepared by acid-base surface modification, J. Hazard. Mater., 141, 315-319 (2007).   DOI
21 J. G. Kim, M. N. Kim, R. Malsawmdawngzela, C. S. An, and S. M. Lee, Adsorption Removal of Cesium from Aqueous Solution using Activated Bentonite, KSWST J. Water Treat., 27, 77-87 (2019).   DOI
22 G. Y. Kim, S.-C. Jang, Y. H. Song, C.-S. Lee, Y. S. Huh, and C. Roh, Screening and Identification of a Cesium-tolerant Strain of Bacteria for Cesium Biosorption, Korean J. Environ. Biol., 31, 304-313 (2016).
23 J. P. Ahn and M. H. Lee, Sorption Efficiency of the Bamboo Charcoal to Remove the Cesium in the Contaminated Water System, Econ. Environ. Geol., 51, 87-97 (2018).   DOI
24 S. R. H. Vanderheyden, R. Van Ammel, K. Sobiech-Matura, K. Vanreppelen, S. Schreurs, W. Schroeyers, J. Yperman, and R. Carleer, Adsorption of cesium on different types of activated carbon, J. Radioanal. Nucl. Chem., 310, 301-310 (2016).   DOI
25 M. Uchimiya, S. Chang, and T. Klasson, Screening biochars for heavy metal retention in soil: Role of oxygen functional groups, J. Hazard. Mater., 190, 432-441 (2011).   DOI
26 H. Bessbousse, T. Rhlalou, JF. Verchere, and L. Lebrun, Removal of heavy metal ions from aqueous solutions by filtration with a novel complexing membrane containing poly (ethyleneimine) in a poly (vinyl alcohol) matrix, J. Membr. Sci., 307, 249-259 (2008).   DOI
27 E. Dialynas and E. Diamadopoulos, Integration of a membrane bioreactor coupled with reverse osmosis for advanced treatment of municipal wastewater, Desalination, 238, 302-311 (2009)   DOI
28 S. Ding, L. Zhang, Y. Li, and L. Hou, Fabrication of a novel polyvinylidene fluoride membrane via binding SiO2 nanoparticles and a copper ferrocyanide layer onto a membrane surface fors elective removal of cesium, J. Hazard. Mater., 368, 292-299 (2019).   DOI
29 S. H. Park and S. D. Kim, Oxygen plasma surface modification of polymer powder in a fluidized bed reactor-functionalization of HDPE powder surface, Korean J. Chem. Eng., 35, 243-248 (1997).
30 A. Morais, J. P. C. Alves, F. A. S. Lima, M. Lira-Cantu, and A. F. Nogueira., Enhanced photovoltaic performance of inverted hybrid bulk heterojunction solar cells using TiO2/ reduced graphene oxide films as electron transport layers, J. Photonics Energy, 5, 057408 (2015).   DOI
31 J. Kiener, L. Limousy, M. Jeguirim, J. M. Le Meins, S. HajjarGarreau, G. Bigoin, and C. M. Ghimbeu, Activated Carbon/Transition Metal (Ni, In, Cu) Hexacyanoferrate Nanocomposites for Cesium Adsorption, Materials, 12, 1253 (2019).   DOI
32 J. H. Kim, S. H. Kim, G. B. Lee, H. Kim, and B. U. Hong, Characterization of Gas Production and Development of specific surface areas during the Chemical Activation on Activated Carbons Treated with Ozone, Energy Environ., 14, 113-124 (2019).
33 N. Talreja, D. Kumar, and N. Verma, Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads, J. Water Process Eng., 3, 34-45 (2014).   DOI
34 D. Mohan and C. U. Pittman Jr, Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater., 137, 762-811 (2006).   DOI
35 H. Marsh and F. Rodriguez-Reinonso, Activated carbon, 89-100, Elsevier Science & Technology Books, Amsterdam, NL (2006).
36 M. Montana, A. Camacho, I. Serrano, R. Devesa, L. Matia and I. Valles, Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal, J. Environ. Radioact., 125, 86-92 (2013).   DOI
37 B. H. Yang, C. G. Kim, J. D. Kim, and S. K. Ryu, The Study of Surface-Chemical Characteristics of Ozone treated Activated Carbon fibers, Theories and Application of Chem. Eng., 4, 2677-2680 (1998).
38 S. J. Park, J. S. Shin, and J. Kawasaki, Ammonia Removal of Activated Carbons Treated by Anodic Oxidation, Appl. Chem. Eng., 14, 418-422 (2003).
39 S. J. Park and J. S. Shin, Influence of copper content on NO removal of the activated carbon fibers produced by electroplating, J. Colloid Interface Sci., 264, 39-42 (2003).   DOI
40 C. L. Mangun, J. A. De Barr, and J. Economy, Adsorption of sulfur dioxide on ammonia-treated activated carbon fibers, Carbon, 39, 1689-1696 (2001).   DOI