Browse > Article
http://dx.doi.org/10.14478/ace.2019.1082

Effects of Oxygen Functional Groups introduced onto Activated Carbon Fibers on Gas Sensing Property of Chemical Warfare Agent  

Kim, Su Hyun (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Kim, Min-Ji (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Song, Eun Ji (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Lee, Young-Seak (Department of Applied Chemistry and Chemical Engineering, Chungnam National University)
Publication Information
Applied Chemistry for Engineering / v.30, no.6, 2019 , pp. 719-725 More about this Journal
Abstract
In this study, activated carbon fibers were treated with oxygen plasma to investigate gas sensing properties of the dimethyl methylphosphonate (DMMP), which is a simulant gas of the chemical warfare agent, according to oxygen functional group contents. As the flow rate of oxygen plasma treatment increased, oxygen groups were introduced to the surface of activated carbon fibers from 6.90 up to 36.6%, increasing the -OH group which influences the DMMP gas sensing properties. However, as the flow rate of oxygen plasma increases, the specific surface area tends to decrease because etching on the surface of activated carbon fibers occurs due to active species generated during the oxygen plasma treatment. The resistance change rate of the DMMP gas sensor increased from 4.2 up to 25.1% as the oxygen plasma treatment flow rate increased. This is attributed to the hydrogen bonding between DMMP gas and introduced hydroxyl functional group on activated carbon fibers by the oxygen plasma treatment. Therefore, the oxygen plasma is considered to be one of the important surface treatment methods for detecting chemical warfare agents at room temperature.
Keywords
Oxygen functional group; Chemical warfare agent; Dimethyl methylphosphonate; Gas sensor; Activated carbon fibers;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 R. Yoo, S. Yoo, D. Lee, J. Kim, S. Cho, and W. Lee, Highly selective detection of dimethyl methylphosphonate(DMMP) using CuO nanoparticles/ZnO flowers heterojunction, Sens. Actuators B, 240, 1099-1105 (2017).   DOI
2 J. S. Im, S. C. Kang, B. C. Bai, T. S. Bae, S. J. In, E. Jeong, S. H. Lee, and Y. S. Lee, Thermal fluorination effects on carbon nanotubes for preparation of a high-performance gas sensor, Carbon, 49, 2235-2244 (2011).   DOI
3 S. C. Kang, J. S. Im, and Y. S. Lee, Hydrogen sensing property of porous carbon nanofibers by controlling pore structure and depositing Pt catalyst, Appl. Chem. Eng., 22, 243-248 (2011).
4 S. Lee, M. S. Park, M. J. Jung, and Y. S. Lee, NO gas sensing of ACFs treated by E-beam irradiation in $H_2O_2$ solution, Trans. Korean Hydrogen New Energy Soc., 27, 298-305 (2016).   DOI
5 M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Adsorption characteristics of chromium ion at low concentration using oxyfluorinated activated carbon fibers, Appl. Chem. Eng., 26, 432-438 (2015).   DOI
6 S. D. Kim, J. W. Kim, J. S. Im, S. H. Cho, and Y. S. Lee, Surface modification characteristics of activated carbon fibers for hydrogen storage, Trans. Korean Hydrogen New Energy Soc., 17, 47-54 (2006).
7 B. C. Bai, H. U. Lee, C. W. Lee, Y. S. Lee, and J. S. Im, $N_2$ plasma treatment on activated carbon fibers for toxic gas removal: Mechanism study by electrochemical investigation, Chem. Eng. J., 306, 260-268 (2016).   DOI
8 J. Y. Jeong, J. Park, I. Henins, S. E. Babayan, V. J. Tu, G. S. Selwyn, G. Ding, and R. F. Hicks, Reaction chemistry in the afterglow of an oxygen-helium, atmospheric-pressure plasma, J. Phys. Chem. A, 104, 8027-8032 (2000).   DOI
9 J. Duch, M. Mazur, M. G. Cepa, J. Podobinski, W. Piskorz, and A. Kotarba, Insight into the modification of electrodonor properties of multiwalled carbon nanotubes via oxygen plasma: Surface functionalization versus amorphization, Carbon, 137, 425-432 (2018).   DOI
10 M. J. Jung, Y. Ko, K. H. Kim, and Y. S. Lee, Oxyfluorination of pitch-based activated carbon fibers for high power electric double layer capacitor, Appl. Chem. Eng., 28, 638-644 (2017).   DOI
11 S. C. Kang, J. S. Im, S. H. Lee, T. S. Bae, and Y. S. Lee, High-sensitivity gas sensor using electrically conductive and porosity-developed carbon nanofiber, Colloids Surf. A, 384, 297-303 (2011).   DOI
12 M. J. Jung, M. S. Park, S. Lee, and Y. S. Lee, Effect of E-beam radiation with acid drenching on surface properties of pitch-based carbon fibers, Appl. Chem. Eng., 27, 319-324 (2016).   DOI
13 E. J. Song, M. J. Kim, J. I. Han, Y. J. Choi, and Y. S. Lee, Gas adsorption characteristics of by interaction between oxygen functional groups introduced on activated carbon fibers and acetic acid molecules, Appl. Chem. Eng., 30, 160-166 (2019).   DOI
14 S. J. Park and B. J. Kim, Surface characteristics and hydrogen chloride removal of activated carbon fibers modified by atmospheric pressure plasma treatment, J. Korean Ind. Eng. Chem., 15, 611-617 (2004).
15 D. H. Kang, M. J. Kim, H. Jo, Y. J. Choi, and Y. S. Lee, Influence of the micropore structures of PAN-based activated carbon fibers on nerve agent simulant gas (DMMP) sensing property, Appl. Chem. Eng., 29, 191-195 (2018).   DOI
16 S. R. Morrison, Mechanism of semiconductor gas sensor operation, Sens. Actuators, 11, 283-287 (1987).   DOI
17 M. J. Kim, M. J. Jung, S. S. Choi, and Y. S. Lee, Effects of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 26, 92-98 (2015).   DOI
18 M. S. Park, K. H. Kim, M. J. Kim, and Y. S. Lee, $NH_3$ gas sensing properties of a gas sensor based on fluorinated graphene oxide, Colloids Surf. A, 490, 104-109 (2016).   DOI
19 S. Lee, M. J. Jung, K. M. Lee, and Y. S. Lee, Nitric oxide sensing property of gas sensor based on activated carbon fiber radiated by electron-beam, Appl. Chem. Eng., 28, 299-305 (2017).   DOI
20 N. Hu, Z. Yang, Y. Wang, L. Zhang, Y. Wang, X. Huang, H. Wei, L. Wei, and Y. Zhang, Ultrafast and sensitive room temperature $NH_3$ gas sensor based on chemically reduced graphene oxide, Nanotechnology, 25, 1-9 (2014).
21 H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sens. Actucators B, 115, 247-251 (2006).   DOI
22 M. J. Kim, E. J. Song, K. H. Kim, S. S. Choi, and Y. S. Lee, The textural and chemical changes in ACFs with E-beam and their influence on the detection of nerve agent simulant gases, J. Ind. Eng. Chem., 79, 465-472 (2019).   DOI
23 M. J. Kim, S. Lee, K. M. Lee, H. Jo, S. S. Choi, and Y. S. Lee, Effect of CuO introduced on activated carbon fibers formed by electroless plating on the NO gas sensing, J. Ind. Eng. Chem., 60, 341-347 (2018).   DOI
24 M. D. Ganji, Z. Dalirandeh, A. Khosravi, and A. Fereidoon, Aluminum nitride graphene for DMMP nerve agent adsorption and detection, Mater. Chem. Phys., 145, 260-267 (2014).   DOI
25 K. T. Alali, J. Liu, K. Aliebawi, P. Liu, R. Chen, R. Li, H. Zhang, L. Zhou, and J. Wang, Electrospun n-p $WO_3/CuO$ heterostructure nanofibers as an efficient sarin nerve agent sensing material at room temperature, J. Aollys Compd., 793, 31-41 (2019).   DOI
26 J. Jun, J. S. Lee, D. H. Shin, J. Oh, W. Kim, W. N. and, Fabrication of a one-dimensional tube-in-tube polypyrrole/Tin oxide structure for highly sensitive DMMP sensor applications, J. Mater. Chem., 33, 17335-17340 (2017).
27 Y. C. Quintero and R. Nagarajan, Molecular and dissociative adsorption of DMMP, sarin and soman on dry and wet $TiO_2(110)$ using density functional theory, Surf. Sci., 675, 26-35 (2018).   DOI
28 T. Alizadeh and L. H. Soltani, Reduced graphene oxide-based gas sensor array for pattern recognition of DMMP vapor, Sens. Actuators B., 234, 361-370 (2016).   DOI
29 M. J. Kim, K. H. Kim, X. Yang, Y. Yu, and Y. S. Lee, Improvement in NO gas-sensing properties using heterojunctions between polyaniline and nitrogen on activated carbon fibers, J. Ind. Eng. Chem., 76, 181-187 (2019).   DOI
30 J. S. Lee, O. S. Kwon, S. J. Park, E. Y. Park, S. A. You, H. Yoon, and J. Jang, Fabrication of ultrafine metal-oxide decorated carbon nanofibers for DMMP sensor appliciation, ACS Nano, 5, 7992-8001 (2011).   DOI