• Title/Summary/Keyword: 사전/사후분포

Search Result 95, Processing Time 0.019 seconds

Analysis of Weights Given to Observations in the Bayesian Reliability Prediction (베이지안 기법을 이용한 신뢰도 예측 시 관측치에 주어지는 가중치 분석에 관한 연구)

  • Yang, Hee Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.53-61
    • /
    • 1999
  • 평균치에 적용되는 credibility formula를 분산에도 적용하여 응용 할 수 있는 extended credibility formula를 개발한다. 간단한 베이지안 신뢰도 예측모형을 구축하고 이 모형에 extended credibility formula를 적용한다. 감마 사전분포 - 포아송 우도의 경우와 베타 사전분포 - 이항분포 우도의 경우에 대해 extended credibility formula를 적용해 관측치에 주어진 가중치에 따라 사후 분산이 어떻게 변화하는지를 분석한다. 사후분산도 사후평균과 마찬가지로 사전값과 관측값의 가중평균으로 표시될 수 있다는 것을 증명한다. 가중치와 불확실성 감소율간의 관계도 연구된다. 이와 같은 가중치에 따른 사전 및 사후분포의 변화 양식에 대한 이해는 올바른 사전분포를 설정하는데 큰 도움이 될 수 있다.

  • PDF

Bayesian Analysis for the Error Variance in a Two-Way Mixed-Effects ANOVA Model Using Noninformative Priors (무정보 사전분포를 이용한 이원배치 혼합효과 분산분석모형에서 오차분산에 대한 베이지안 분석)

  • 장인홍;김병휘
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.405-414
    • /
    • 2002
  • We consider the problem of estimating the error variance of in a two-way mixed-effects ANOVA model using noninformative priors. First, we derive Jeffreys' prior, a reference prior, and matching priors. We then provide marginal posterior distributions under those noninformative priors. Finally, we provide graphs of marginal posterior densities of the error variance and credible intervals for the error variance in two real data set and compare these credible intervals.

Noninformative Priors for the Ratio of Parameters in Inverse Gaussian Distribution (INVERSE GAUSSIAN분포의 모수비에 대한 무정보적 사전분포에 대한 연구)

  • 강상길;김달호;이우동
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.1
    • /
    • pp.49-60
    • /
    • 2004
  • In this paper, when the observations are distributed as inverse gaussian, we developed the noninformative priors for ratio of the parameters of inverse gaussian distribution. We developed the first order matching prior and proved that the second order matching prior does not exist. It turns out that one-at-a-time reference prior satisfies a first order matching criterion. Some simulation study is performed.

A Study on Poisson-lognormal Model (포아송-로그정규분포 모형에 관한 연구)

  • 김용철
    • The Korean Journal of Applied Statistics
    • /
    • v.13 no.1
    • /
    • pp.189-196
    • /
    • 2000
  • Conjugate prior density families were motivated by considerations of tractability in implementing the Bayesian paradigm. But we consider problem that the conjugate prior p($\Theta$) cannot be used in restriction of the parameter $\Theta$. This article considers the nonconjugate prior problem of hierarchical Poisson model. We demonstrate the use of latent variables for sampling non-standard densities which arise in the context of the Bayesian analysis of non-conjugate by using a Gibbs sampler.

  • PDF

Bayesian Analysis for Burr-Type XStrength-Stress Model

  • Kang, Sang-gil;Ko, Jeong-Hwan;Lee, Woo-Dong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.4 no.4
    • /
    • pp.47-52
    • /
    • 1999
  • In this paper, we develop noninformative priors that are used for estimating the reliability of stress-strength system under the Burr-type X distribution. A class of priors is found by matching the coverage probabilities of one-sided Bayesian credible interval with the corresponding frequentist coverage probabilities. It turns out that the reference prior is a first order matching prior. The propriety of posterior under matching prior is provided. The frequentist coverage probabilities are given for small samples.

  • PDF

베이지안 방법에 의한 K개 지수분포 모수들의 기하평균 추정에 관한 연구

  • Kim, Dae-Hwang;Kim, Hye-Jung
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.169-174
    • /
    • 2002
  • 본 연구는 k개 지수분포 모수들의 기하평균에 대한 베이지안추정 방법을 제시하였다. 이를 위해 Tibshirani가 제안한 직교변환법으로 비정보적 사전확률분포를 도출하여 모수들의 결합사후확률분포를 유도해 내었으며, 이 분포 하에서 가중 몬테칼로 방법을 사용하여 기하평균을 추정하는 절차를 제안하였다. 모의실험과 실제자료의 예를 통해 제안된 베이지안 추정의 유효성 및 효용성을 보였으며, 본 연구에서 제안한 사전확률분포가 전통적인 포함확률을 기준으로 볼 때, Jeffrey의 사전확률분포 보다 더 유효한 추정을 함을 보였다.

  • PDF

경시적 자료의 계층적 베이즈 분석

  • 김달호;신임희
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.2
    • /
    • pp.431-437
    • /
    • 1998
  • 본 논문의 목적은 계층적 베이즈 일반화 선형모형을 이용하여 경시적 자료를 분석하는 것이다. 구체적으로 계층적 베이즈 변량효과 모형을 소개하고 무정보적 사전분포 하에서 사후분포가 진(proper)인지에 대한 충분조건을 찾는다 또한, 깁스(Gibbs) 표본자를 사용하여 제안된 계층적 베이즈 절차의 수행에 관해 논의한다. 현실자료를 사용하여 제안된 계층적 베이즈 분석을 예시하고, 이에 대응하는 경험적 베이즈 분석과 비교한다.

  • PDF

Bayesian Method for the Multiple Test of an Autoregressive Parameter in Stationary AR(L) Model (AR(1)모형에서 자기회귀계수의 다중검정을 위한 베이지안방법)

  • 김경숙;손영숙
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.1
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents the multiple testing method of an autoregressive parameter in stationary AR(1) model using the usual Bayes factor. As prior distributions of parameters in each model, uniform prior and noninformative improper priors are assumed. Posterior probabilities through the usual Bayes factors are used for the model selection. Finally, to check whether these theoretical results are correct, simulated data and real data are analyzed.

A Bayesian Prediction of the Generalized Pareto Model (일반화 파레토 모형에서의 베이지안 예측)

  • Huh, Pan;Sohn, Joong Kweon
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.6
    • /
    • pp.1069-1076
    • /
    • 2014
  • Rainfall weather patterns have changed due to global warming and sudden heavy rainfalls have become more frequent. Economic loss due to heavy rainfall has increased. We study the generalized Pareto distribution for modelling rainfall in Seoul based on data from 1973 to 2008. We use several priors including Jeffrey's noninformative prior and Gibbs sampling method to derive Bayesian posterior predictive distributions. The probability of heavy rainfall has increased over the last ten years based on estimated posterior predictive distribution.

Bayesian Estimation of k-Population Weibull Distribution Under Ordered Scale Parameters (순서를 갖는 척도모수들의 사전정보 하에 k-모집단 와이블분포의 베이지안 모수추정)

  • 손영숙;김성욱
    • The Korean Journal of Applied Statistics
    • /
    • v.16 no.2
    • /
    • pp.273-282
    • /
    • 2003
  • The problem of estimating the parameters of k-population Weibull distributions is discussed under the prior of ordered scale parameters. Parameters are estimated by the Gibbs sampling method. Since the conditional posterior distribution of the shape parameter in the Gibbs sampler is not log-concave, the shape parameter is generated by the adaptive rejection sampling. Finally, we applied this estimation methodology to the data discussed in Nelson (1970).