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1. Introduction

In the process of Bayesian prediction, the assessment of credible prior distribution is a
difficult and important task since we may end up with fairly different prediction depending
on the assessed prior distribution. The prior distribution is assessed based on historical
data incorporating expert opinions and engineering knowledge. Lack of such information
forces us to assign a large variance on the prior and consequently much weight on later
observations. On the other hand, enough credible information allows us to assess a
sharpened prior distribution that will not pay much attention to observations, and
accordingly we can expect relatively smaller amount of change on the posterior mean by
observations. We may temporarily have undesirable feature that the posterior variance
increases by observations until enough data is obtained in the situation where the assessed
prior variance is unsuitably small and the assessed prior expectation is far from the
unobservable true mean. Such phenomena is actually due to the wrong assessment of
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prior distribution on the part of mean as well as variances, that enables us to analyze how
the weights given to observations influence the shape of posterior distributions. The
knowledge about the pattern that the posterior variance behaves depending on the weight
given to observations will now help us assess the proper prior distributions. We construct
two simple reliability prediction models : one in which a failure rate influences the number
of failures in a given time period, another in which a failure can escalate to more severe
one. Based on such models, we will focus our analysis on the cases of Gamma
priors-Poisson likelihood, and Beta priors-Binomial likelihood, which are frequently used in
the fields of reliability prediction and forecasts of escalating failures([5],[6]).

2. Gamma Prior and Poisson Likelihood

Consider an influence diagram in figure 1, where A denotes a failure rate and n =
n(T) denotes the number of failures in time period (0,T). We omit the explanation of
influence diagrams which is not the scope of this work. For details of influence diagrams,
readers may refer to references [3], [4]. Bayesian approach in predicting the time to next
failure can be proceeded without any distributional assumptions on A. The theory of arc
reversals and node absorptions in influence diagrams can be helpful in obtaining posterior
and predictive distributions. When we treat real data we firstly have to assess a prior
distribution on the failure rate and likelihood on the number of failures conditional on the
failure rate.

Figure 1. A Simple Reliability Prediction Model

Generally reliability systems are composed of some parallel systems or back-up systems,
thus the distribution of failure rate in such systems has a peak in a low probability region
and still has long tails to the high probability region. Gamma prior is a good candidate in
expressing such shape. With assumption of independent failure occurrence we can assume
Poisson likelihood.

We adopt the convention that if a random variable A follows a Gamma distribution
with parameters a and B, the probability density function is expressed as

a-1 _—-M
#) =Ia, p=BEL—e —
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The prior mean and variance of A are obtained by

E[A]= Vm{x]=7;’2 L

wlr

The posterior distribution of A is also Gamma with parameters & =a+#n, § =8+ 7T, and
the posterior mean and variance are obtained by

_a _ _a+mn
__a _ _atn
Var{Al| Dl= (BY: ™~ (B+ D)? 3)

where D represents observed data.

Equation (2) can be reexpressed as (4).

BA| Dl =B L 4 L 2 = (1 - w BT+ wi (@)
E{A] can be interpreted as the mean of an extreme case where the information contained
in observations is completely ignored, while x#=#xn/T can be interpreted as the mean of
another extreme case where the prior information is completely ignored, and we call g« as
the observed mean. Equation (4), which is so called credibility formula, says that posterior
mean can be expressed as a weighted average of prior and observed mean. Now similar
analysis can be applied to cases of variances. Equation (3) can be reexpressed as equation
(5).

—_—atn _ g _a °
Vel Al DI=—c oy = Gr i # T G 1

—;le- = (1— w)? Var{ A] + w*? (5

where w = T/( 8+ T) denotes the weight given to the observations.

VarfA] can be explained as the variance of the extreme cases where the information
contained in the observation is completely ignored. On the other hand o¢%= #n/T® can be
interpreted as the variance of another extreme case where prior parameters ¢ and B are
set to zero. We call ¢ as the observed variance or null variance. The weight assigned
to the observation is determined by A and observation period T, not depending on the
number of events n, Since £ can be expressed as E[Al/Var{A], small B represents a large
variance on prior for the same prior mean. Thus large uncertainty on prior is reflected by
a small B and gives large weight on observations. And as T becomes larger by observing
data in a longer time period, the weight becomes larger and larger and eventually
approaches to 1. When the weight is 1 the posterior mean is just the observed mean so



5 ¢33F Hol A ¢k 71 W& o] 8T AHE oF A] AFA ] FAAE 71F3A B4 B AF

that the prior information is completely ignored. Similarly, when the weight is small the
posterior variance is mainly coming from the prior variance, and information contained in
observations does not affect the prior uncertainty much. On the other hand, when the
weight is large, most of the posterior variance is composed of the null variance, thus the
amount of prior uncertainty does not affect the posterior variance much.

To study how much change on the prior mean and uncertainty reduction can be
achieved by observations, let us define d=(n/T)— E[A] to represent a difference between
observed and prior mean. Then the difference between prior and posterior mean, dE, and
the amount of uncertainty reduction, dVar, can be obtained by

dE=E{A| D]— E[A]l= wd (6)
dVar= VarldAl— VadA | DI=w(Var A1 —d/(B+ T)) )

Therefore the amount of deviation of the observed mean from the assessed prior mean is
reflected in the posterior mean only by the portion of the weight. If we assess a prior
distribution with large variance, in other words if we tend to assign a large weight to
observations, which is usual when to make a forecast without enough information, the
prior prediction may be changed a lot by a single observation. On the other hand, if
available information allows us to assess prior distribution with small variance or assign a
small weight to observation, an observation whose mean value somewhat deviates from the
prior mean will not modify the prior distribution much, thus the posterior prediction will
remain similar to the prior prediction. From equation (7) it can be seen that we may have
undesirable feature that the posterior variance increases when the deviation d is greater
than Var{ A1( 8+ 7). ,

As we acquire more data and thereby we assess more credible distribution, we can
expect the observed mean will fall close to the prior mean. In such a steady state if the
difference between observed and prior mean is negligible, the variance reduces by wVar
[ Al. And the ratio of uncertainty reduction can be expressed as

. . . _ _VadAl—VaAdi| D] _
ratio of uncertainty reduction = Var Al =w

The above ratio also represents the maximum ratio of uncertainty reduction that can be
achieved by observations. Therefore the weight plays an important role in determining the
posterior distribution

To see the increasing pattern of weights over observation period depending on the
assessed variance, consider figure 2.

Figure 2 is drawn for three cases that the prior variances are 0.003, 0.03, and 0.3 with
same prior mean of 0.385. It can be seen that only 20 time units increases the weight to
almost 1 when the prior variance is66 large, and even 100 time units increase the weight
to less than 0.5 when the prior variance is small.
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Figure 2. Weights over Observation Periods

More close look at reveals the fact that if k times smaller variance is assigned then k
times longer period of observation is required to reach to the same weight. This can be
proved easily. Let (@,,8;) and (a.,B;) be two different prior parameters of a Gamma
distribution where

a; a

22 4 ., &
B B (B2 " (8y)?

so that the assessed prior mean is same but k times smaller variance is assessed to the
second case. Then the weight to the first case when the observation period is T: is

I
ViTTR T,

and the weight to the second case when the observation period is T: is

1
e ___ T kT
27 B+ T B8+ T, /31"‘_}67‘2

Thus if T~k is equal to Ti, w2 becomes same as wi. Therefore if one assigns k times
smaller variance it can be interpreted as one is willing to wait for k times longer period
until one puts same amount of trust on the observations.

Understanding such behavior of posterior mean and variance that depends on weights is
very much helpful in assessing the prior distributions. It may be obscure to assign
specific value for prior parameters, but we may have more confident feeling and set of
ideas that is useful to assign a weight to observations.
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3. Beta Priors and Binomial Likelihood

We extend a model in figure 1 to explain the failure escalation process. In figure 3, ¢
denotes the escalation probability. Thus A ¢ denotes the rate of severe failures. On the
part of A same approach in section 2 can be applied. For ¢, we assume Beta distribution
with parameters a, and b, since Beta distributions are quite flexible covering almost all
forms of distributions in region between 0, and 1.

Figure 3. Failure Level Escalating Model

Since most of the failures escalate to severe ones independently, we assume Binomial
likelihood for m(T) given n(T) and ¢.

In a Beta prior and Binomial likelihood model where ¢ denote the failure probability
following a Beta distribution with parameters a, b, assume that we have oserved m
failures out of n independent trials. The prior mean and variance of ¢ are obtained by

_ ab
Varlel= (a+b)z(a+b+1) - (8)

The posterior distribution of ¢ is also Beta with parameters a’,b’ and the posterior mean
and variance are obtained by

a _ _atm

ElolD)=4 =—atm— ©
= a' = a+m

Vel e ID) =~ ot (T 5 7D~ (at b+ ) (at brntD) (10)

Similarly to the ones in the above section, equation (9) and (10) can be reexpressed as
(11) and (12).

EelD)=—0tb _—a . _n__Mm__ 5B gl+up a1
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_(1_.y2_atb+l l+n—m , m 2 ntl m(n—m)
Vel oIDI=0U =) 25y P Vel o s T et

~ (1-wi( + L‘,;L"- + —’aﬂ)Vam] + wo? (12)

where w=n/(a+b+n) denotes the weight given to the observation.

The weight assigned to the observation is determined by a+b and total number of trials n,
not depending on the number of failures m. Small a+b represents a large variance on prior
for the same prior mean. Thus large uncertainty on prior is reflected by a small a+b and
gives large weight on observations. Similar explanation on equations (4) and (5) can be
applied to equations (11) and (12).

Equation (6) and (7) can be rewritten as followings for the case of Beta prior and
Binomial likelihood.

dE = E[¢I|D] - E[¢] = wd 13)

- — . __btn—m_
dVar= Vard ¢ 1— Var ¢|Dl»u Vard ¢ ] (et bin)? d (14)

As the case of Gamma prior and Poisson likelihood the deviation of the observed mean is
taken into account by the portion of the weight when to determine the posterior mean.
And when the difference between observed and prior mean is negligible, the variance
reduces by wVar[ ¢ ]. Thus the ratio of uncertainty reduction is

. . . Val ¢ 1= Vad ¢|D] _
ratio of uncertainty reduction Varl ¢ ] w

The last argument in previous section is still valid for Beta prior and Binomial likelihood.
Let(a;,b1) and ((agb2) be two different prior parameters of a Beta distribution where

[“3] — a) a1b1 = b azbg
a1+bl a2+b2 ' (a,+b1)2(a1+b1+1) v (a2+bg)2(a2+bg+1)

Then

m

= a1+b1+n1

W= ny n Ny _ g
g = =
42+b2+n2 ka1+kb1+n2 a]+b]+'%n2
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thus if ny/k is equal to ni, w2 is approximately same as wi. Therefore if one assigns k
times smaller variance, it can be interpreted as one is willing to perform k times more
sampling until one puts same amount of trust on the observations.

4. Summary and Conclusions

The assessment of proper distribution is crucial in obtaining a credible prediction. The
shape(wide vs. narrow) and location(deviation from the true mean) of prior distribution
have combined effects when to respond to observations and determine the posterior
distribution. The relationship between prior and posterior distribution can be explained by
so called “credibility formula”, which says that the posterior mean is a weighted average of
prior mean and observed mean. Credible prior information enables us to asses a sharpened
prior distribution (small weight on observations) that will not pay much attention to
observation, and accordingly we can expect relatively smaller amount of change on the
posterior mean by observation. Such a role of weights in determining the posterior mean
can be expressed as a function of weights.

The ratio of uncertainty reduction is also expressed in terms of weights. We also find
that if one assigns k times smaller prior variance it reflects that one is willing to wait for
k times longer period until one puts same amount of trust on the observations. Such a full
knowledge about how weights work in the process of getting posterior distributions make
it possible for us to asses more adequate prior distributions.
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