• Title/Summary/Keyword: 사용자 선호도 학습

Search Result 161, Processing Time 0.031 seconds

Personalized Contextual Advertisement Using a Dynamic User Model (동적 사용자 모델을 이용한 개인화된 문맥광고)

  • Kang, Young-Kil;Kim, Seong-Min;Lee, Soo-Won
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.189-193
    • /
    • 2006
  • 문맥광고 또는 컨텍스트 기반 광고란 사용자들이 선택한 웹 콘텐츠 내용을 기반으로 하여 연관성 있는 광고를 자동으로 선택하여 사용자에게 제공하는 광고기법이다. 즉, 웹 사이트를 방문하는 고객을 타겟으로 하여 그들이 찾고자 하는 것과 관련된 광고를 내보냄으로써 효과적인 광고가 이루어지도록 하는 것이다. 그러나 기존의 문맥광고는 사용자가 관심을 가지는 키워드가 아닌 광고주가 선택한 키워드를 중심으로 광고 내용을 선택하기 때문에 사용자의 실제적인 관심이 반영되지 않아 광고의 효과가 떨어지는 문제점을 가지고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 사용자가 웹 콘텐츠를 선택할 때 마다 사용자의 선호도를 동적으로 학습하고, 학습된 선호도를 문맥광고에 활용하는 개인화된 문맥광고를 제안한다. 실험을 위해서 제안한 방법으로 광고를 생성해서 보여주는 웹 브라우저를 구현하여 기존의 문맥광고와 개인화된 문맥광고에 대한 사용자의 평가를 비교하였다. 실험 결과 본 논문에서 제안한 개인화된 문맥광고가 ‘콘텐츠의 내용과의 연관성’, ‘사용자의 클릭여부’ 등의 항목에서 기존의 문맥광고에 비해 우수하다는 결과를 얻을 수 있었다.

  • PDF

Collaborative Recommendation of Online Video Lectures in e-Learning System (이러닝 시스템에서 온라인 비디오 강좌의 협업적 추천 방법)

  • Ha, In-Ay;Song, Gyu-Sik;Kim, Heung-Nam;Jo, Geun-Sik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.9
    • /
    • pp.85-94
    • /
    • 2009
  • It is becoming increasingly difficult for learners to find the lectures they are looking for. In turn, the ability to find the particular lecture sought by the learner in an accurate and prompt manner has become an important issue in e-Learning. To deal this issue, in this paper. we present a collaborative approach to provide personalized recommendations of online video lectures. The proposed approach first identifies candidated video lectures that will be of interest to a certain user. Partitioned collaborative filtering is employed as an approach in order to generate neighbor learners and predict learners'preferences for the lectures. Thereafter, Attribute-based filtering is employed to recommend a final list of video lectures that the target user will like the most.

Personalized EPG Application using Automatic User Preference Learning Method (사용자 선호도 자동 학습 방법을 이용한 개인용 전자 프로그램 가이드 어플리케이션 개발)

  • Lim Jeongyeon;Jeong Hyun;Kim Munchurl;Kang Sanggil;Kang Kyeongok
    • Journal of Broadcast Engineering
    • /
    • v.9 no.4 s.25
    • /
    • pp.305-321
    • /
    • 2004
  • With the advent of the digital broadcasting, the audiences can access a large number of TV programs and their information through the multiple channels on various media devices. The access to a large number of TV programs can support a user for many chances with which he/she can sort and select the best one of them. However, the information overload on the user inevitably requires much effort with a lot of patience for finding his/her favorite programs. Therefore, it is useful to provide the persona1ized broadcasting service which assists the user to automatically find his/her favorite programs. As the growing requirements of the TV personalization, we introduce our automatic user preference learning algorithm which 1) analyzes a user's usage history on TV program contents: 2) extracts the user's watching pattern depending on a specific time and day and shows our automatic TV program recommendation system using MPEG-7 MDS (Multimedia Description Scheme: ISO/IEC 15938-5) and 3) automatically calculates the user's preference. For our experimental results, we have used TV audiences' watching history with the ages, genders and viewing times obtained from AC Nielson Korea. From our experimental results, we observed that our proposed algorithm of the automatic user preference learning algorithm based on the Bayesian network can effectively learn the user's preferences accordingly during the course of TV watching periods.

Dynamic Recommendation System for a Web Library by Using Cluster Analysis and Bayesian Learning (군집분석과 베이지안 학습을 이용한 웹 도서 동적 추천 시스템)

  • Choi, Jun-Hyeog;Kim, Dae-Su;Rim, Kee-Wook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.5
    • /
    • pp.385-392
    • /
    • 2002
  • Collaborative filtering method for personalization can suggest new items and information which a user hasn t expected. But there are some problems. Not only the steps for calculating similarity value between each user is complex but also it doesn t reflect user s interest dynamically when a user input a query. In this paper, classifying users by their interest makes calculating similarity simple. We propose the a1gorithm for readjusting user s interest dynamically using the profile and Bayesian learning. When a user input a keyword searching for a item, his new interest is readjusted. And the user s profile that consists of used key words and the presence frequency of key words is designed and used to reflect the recent interest of users. Our methods of adjusting user s interest using the profile and Bayesian learning can improve the real satisfaction of users through the experiment with data set, collected in University s library. It recommends a user items which he would be interested in.

Web Documents Classification with Fuzzy Integration of Multiple Structure-Adaptive Self-Organizing Maps (다중 구조적응 자기구성지도의 퍼지결합을 이용한 웹 문서 분류)

  • 김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.371-373
    • /
    • 2003
  • 웹 문서를 분류하는 목적은 특정 주제별로 중요한 문서들을 구분하려는 것과 사용자의 선호도를 바탕으로 개인화를 하려는 것으로 나누어 볼 수 있다. 특히, 웹의 효율적인 탐색을 위해 사용자가 관심 있어 할 웹 문서를 분류하는 것은 중요하다 일반적으로 하나의 웹 문서는 특징 추출방법에 의해 문서 벡터로 표시되며 사용자의 선호여부나 주제번호를 클래스로 삼는다. 사용자가 선호도를 표시한 웹 문서를 사용하여 새로운 웹 문서의 선호 여부를 예측하기 위해 자기 구성지도(SOM)를 사용하면, 시각적으로 구조를 보여주어 데이터 사이의 관계를 효과적으로 이해할 수 있다. 그러나 SOM은 노드의 개수와 구조를 자동적으로 결정하지 못하는 단점이 있기 때문에, SOM의 장점을 활용하면서 자동적으로 구조를 결정하기 위해 구조적응 자기구성지도(SASOM)를 이용한다. 보다 나은 성능과 다양한 해석을 위해, 여러 개의 SASOM을 서로 다른 특징추출 방법을 이용하여 학습시킨 후 사용자가 주관적으로 분류기의 중요도를 결정할 수 있는 퍼지적분을 사용하여 결합하였다. UCI Syskill & Webert 데이터에 대한 실험결과 기존의 DT, MLP, naive Bayes 분류기 보다 향상된 성능을 보였다.

  • PDF

A Hybrid Document Clustering for a Web Agent (웹 에이전트를 위한 통합방식 문서 클러스터링)

  • Yang, Chan-Beom;Lee, Seong-Yeol;Park, Yeong-Taek
    • Journal of KIISE:Software and Applications
    • /
    • v.28 no.5
    • /
    • pp.422-430
    • /
    • 2001
  • 웹 에이전트는 사용자가 웹을 브라우징하는 행위를 모니터하여 사용자의 관심 정보를 학습하고 사용자가 필요로 하는 웹 상의 정보를 자동 제공하는 지능형 시스템이다. 웹 에이전트가 사용자의 선호도를 학습하기 위해서는 귀납적 기계학습을 수행하는데, 이때 학습의 효율을 높이기 위해서는 사용자가 관심있어하는 문서들을 유사한 문서들로 클러스터링하여 학습 시스템에 제공하여야 한다. 본 논문에서는 웹 에이전트의 학습 시스템에 입력되는 학습대상 문서들을 보다 정확하고 효율적으로 클러스터링하여 제공하기 위해서 Top-down 방식과 Bottom-up 방식을 통합 적용한 통합방식 문서 클러스터링과 초기 클러스터 생성을 위한 평가함수를 제시한다. Top-down 방식으로는 개념적 클러스터링 알고리즘인 COBWEB을 적용하고, Bottom-up 방식으로는 교차기반(Intersection-based) 클러스터링 방식인 Etzioni의 클러스터링 알고리즘을 적용하였다.

  • PDF

Recommendation System Using Multi-Strategy Learning. (복수전략 학습을 이용한 추천 시스템)

  • Han, Hyun-Ku;Suh, Euy-Hyun
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.338-339
    • /
    • 2010
  • 사용자가 원하는 정보를 자동으로 찾아내어 제공하는 추천시스템은 최근 사용자의 만족도를 높이기 위해 많은 연구들이 진행되고 있다. 본 논문은 사용자의 프로파일, 음식 주문 내용 및 날씨/온도 등 외부요인을 기반으로 의사 결정나무를 이용하여 개인의 선호도를 분석하고 연관규칙을 이용하여 음식의 연관성을 분석한 후 음식을 추천하는 유연성 있는 개인화 추천시스템을 제안하고 구축하였다. 본 시스템은 복수 전략 학습을 이용하여 추천함으로써 단일 학습방법을 사용했을 때보다 만족도가 높아지는 것을 알 수 있었다.

Design and Implementation of Contents-based Customized movie recommendation system using meta weight learning (메타 가중치 학습을 활용한 내용 기반의 맞춤형 영화 추천시스템 설계 및 구현)

  • An, Hyeon Woo;You, Hea Woon;Kim, Dea Yeol
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.07a
    • /
    • pp.587-590
    • /
    • 2020
  • 최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.

  • PDF

Data BILuring Method for Solving Sparseness Problem in Collaborative Filtering (협동적 여과에서의 희소성 문제 해결을 위한 데이타 블러링 기법)

  • Kim, Hyung-Il;Kim, Jun-Tae
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.6
    • /
    • pp.542-553
    • /
    • 2005
  • Recommendation systems analyze user preferences and recommend items to a user by predicting the user's preference for those items. Among various kinds of recommendation methods, collaborative filtering(CF) has been widely used and successfully applied to practical applications. However, collaborative filtering has two inherent problems: data sparseness and the cold-start problems. If there are few known preferences for a user, it is difficult to find many similar users, and therefore the performance of recommendation is degraded. This problem is more serious when a new user is first using the system. In this paper we propose a method of integrating additional feature information of users and items into CF to overcome the difficulties caused by sparseness and improve the accuracy of recommendation. In our method, we first fill in unknown preference values by using the probability distribution of feature values, then generate the top-N recommendations by applying collaborative filtering on the modified data. We call this method of filling unknown preference values as data blurring. Several experimental results that show the effectiveness of the proposed method are also presented.