Proceedings of the Korean Information Science Society Conference
/
2006.10b
/
pp.189-193
/
2006
문맥광고 또는 컨텍스트 기반 광고란 사용자들이 선택한 웹 콘텐츠 내용을 기반으로 하여 연관성 있는 광고를 자동으로 선택하여 사용자에게 제공하는 광고기법이다. 즉, 웹 사이트를 방문하는 고객을 타겟으로 하여 그들이 찾고자 하는 것과 관련된 광고를 내보냄으로써 효과적인 광고가 이루어지도록 하는 것이다. 그러나 기존의 문맥광고는 사용자가 관심을 가지는 키워드가 아닌 광고주가 선택한 키워드를 중심으로 광고 내용을 선택하기 때문에 사용자의 실제적인 관심이 반영되지 않아 광고의 효과가 떨어지는 문제점을 가지고 있다. 이러한 문제를 해결하기 위해 본 논문에서는 사용자가 웹 콘텐츠를 선택할 때 마다 사용자의 선호도를 동적으로 학습하고, 학습된 선호도를 문맥광고에 활용하는 개인화된 문맥광고를 제안한다. 실험을 위해서 제안한 방법으로 광고를 생성해서 보여주는 웹 브라우저를 구현하여 기존의 문맥광고와 개인화된 문맥광고에 대한 사용자의 평가를 비교하였다. 실험 결과 본 논문에서 제안한 개인화된 문맥광고가 ‘콘텐츠의 내용과의 연관성’, ‘사용자의 클릭여부’ 등의 항목에서 기존의 문맥광고에 비해 우수하다는 결과를 얻을 수 있었다.
Ha, In-Ay;Song, Gyu-Sik;Kim, Heung-Nam;Jo, Geun-Sik
Journal of the Korea Society of Computer and Information
/
v.14
no.9
/
pp.85-94
/
2009
It is becoming increasingly difficult for learners to find the lectures they are looking for. In turn, the ability to find the particular lecture sought by the learner in an accurate and prompt manner has become an important issue in e-Learning. To deal this issue, in this paper. we present a collaborative approach to provide personalized recommendations of online video lectures. The proposed approach first identifies candidated video lectures that will be of interest to a certain user. Partitioned collaborative filtering is employed as an approach in order to generate neighbor learners and predict learners'preferences for the lectures. Thereafter, Attribute-based filtering is employed to recommend a final list of video lectures that the target user will like the most.
With the advent of the digital broadcasting, the audiences can access a large number of TV programs and their information through the multiple channels on various media devices. The access to a large number of TV programs can support a user for many chances with which he/she can sort and select the best one of them. However, the information overload on the user inevitably requires much effort with a lot of patience for finding his/her favorite programs. Therefore, it is useful to provide the persona1ized broadcasting service which assists the user to automatically find his/her favorite programs. As the growing requirements of the TV personalization, we introduce our automatic user preference learning algorithm which 1) analyzes a user's usage history on TV program contents: 2) extracts the user's watching pattern depending on a specific time and day and shows our automatic TV program recommendation system using MPEG-7 MDS (Multimedia Description Scheme: ISO/IEC 15938-5) and 3) automatically calculates the user's preference. For our experimental results, we have used TV audiences' watching history with the ages, genders and viewing times obtained from AC Nielson Korea. From our experimental results, we observed that our proposed algorithm of the automatic user preference learning algorithm based on the Bayesian network can effectively learn the user's preferences accordingly during the course of TV watching periods.
Journal of the Korean Institute of Intelligent Systems
/
v.12
no.5
/
pp.385-392
/
2002
Collaborative filtering method for personalization can suggest new items and information which a user hasn t expected. But there are some problems. Not only the steps for calculating similarity value between each user is complex but also it doesn t reflect user s interest dynamically when a user input a query. In this paper, classifying users by their interest makes calculating similarity simple. We propose the a1gorithm for readjusting user s interest dynamically using the profile and Bayesian learning. When a user input a keyword searching for a item, his new interest is readjusted. And the user s profile that consists of used key words and the presence frequency of key words is designed and used to reflect the recent interest of users. Our methods of adjusting user s interest using the profile and Bayesian learning can improve the real satisfaction of users through the experiment with data set, collected in University s library. It recommends a user items which he would be interested in.
Proceedings of the Korean Information Science Society Conference
/
2003.04c
/
pp.371-373
/
2003
웹 문서를 분류하는 목적은 특정 주제별로 중요한 문서들을 구분하려는 것과 사용자의 선호도를 바탕으로 개인화를 하려는 것으로 나누어 볼 수 있다. 특히, 웹의 효율적인 탐색을 위해 사용자가 관심 있어 할 웹 문서를 분류하는 것은 중요하다 일반적으로 하나의 웹 문서는 특징 추출방법에 의해 문서 벡터로 표시되며 사용자의 선호여부나 주제번호를 클래스로 삼는다. 사용자가 선호도를 표시한 웹 문서를 사용하여 새로운 웹 문서의 선호 여부를 예측하기 위해 자기 구성지도(SOM)를 사용하면, 시각적으로 구조를 보여주어 데이터 사이의 관계를 효과적으로 이해할 수 있다. 그러나 SOM은 노드의 개수와 구조를 자동적으로 결정하지 못하는 단점이 있기 때문에, SOM의 장점을 활용하면서 자동적으로 구조를 결정하기 위해 구조적응 자기구성지도(SASOM)를 이용한다. 보다 나은 성능과 다양한 해석을 위해, 여러 개의 SASOM을 서로 다른 특징추출 방법을 이용하여 학습시킨 후 사용자가 주관적으로 분류기의 중요도를 결정할 수 있는 퍼지적분을 사용하여 결합하였다. UCI Syskill & Webert 데이터에 대한 실험결과 기존의 DT, MLP, naive Bayes 분류기 보다 향상된 성능을 보였다.
웹 에이전트는 사용자가 웹을 브라우징하는 행위를 모니터하여 사용자의 관심 정보를 학습하고 사용자가 필요로 하는 웹 상의 정보를 자동 제공하는 지능형 시스템이다. 웹 에이전트가 사용자의 선호도를 학습하기 위해서는 귀납적 기계학습을 수행하는데, 이때 학습의 효율을 높이기 위해서는 사용자가 관심있어하는 문서들을 유사한 문서들로 클러스터링하여 학습 시스템에 제공하여야 한다. 본 논문에서는 웹 에이전트의 학습 시스템에 입력되는 학습대상 문서들을 보다 정확하고 효율적으로 클러스터링하여 제공하기 위해서 Top-down 방식과 Bottom-up 방식을 통합 적용한 통합방식 문서 클러스터링과 초기 클러스터 생성을 위한 평가함수를 제시한다. Top-down 방식으로는 개념적 클러스터링 알고리즘인 COBWEB을 적용하고, Bottom-up 방식으로는 교차기반(Intersection-based) 클러스터링 방식인 Etzioni의 클러스터링 알고리즘을 적용하였다.
사용자가 원하는 정보를 자동으로 찾아내어 제공하는 추천시스템은 최근 사용자의 만족도를 높이기 위해 많은 연구들이 진행되고 있다. 본 논문은 사용자의 프로파일, 음식 주문 내용 및 날씨/온도 등 외부요인을 기반으로 의사 결정나무를 이용하여 개인의 선호도를 분석하고 연관규칙을 이용하여 음식의 연관성을 분석한 후 음식을 추천하는 유연성 있는 개인화 추천시스템을 제안하고 구축하였다. 본 시스템은 복수 전략 학습을 이용하여 추천함으로써 단일 학습방법을 사용했을 때보다 만족도가 높아지는 것을 알 수 있었다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2020.07a
/
pp.587-590
/
2020
최근, 디지털 콘텐츠 산업이 폭발적으로 성장됨에 따라 고객 유치를 위한 개인화 추천 기술들이 많은 주목을 받고 있다. 개인화 추천 방식들을 큰 갈래로 나누어 본다면 협업 필터링 기술과 내용 기반 기술로 나눌 수 있다. 협업 필터링의 경우 개인화 추천에는 적합하지만 사용자 평가 데이터의 양이 방대해야 하며 초기에 평가자가 없는 콘텐츠에 대해 추천할 수 없는 초기 평가자 문제가 존재한다. 따라서 매일 방대한 양의 콘텐츠가 편입되는 분야에서 사용하기에 큰 결점이 될 수 있다. 본 논문에서는 영화들의 정보가 담긴 데이터 셋과 사용자 평가 데이터, 그리고 사용자의 선호 기준을 의미하는 메타 가중치를 활용한 내용 기반의 맞춤형 영화 추천 시스템을 제안한다. 논문에서는 먼저, 영화를 고를 때 일반적으로 중요시 보는 속성들을 활용하여 영화의 특징 벡터를 구성하고, 이를 사용자 평가와 결합하여 개인의 선호에 대한 특징 벡터를 구성하는 방법을 제안하며, 구성된 데이터와 코사인 유사도, 메타 가중치를 활용하여 사용자 선호와 유사한 영화들을 도출하는 방법을 제안한다. 또한, 평가데이터를 활용하여 구현된 추천시스템의 검증 프로세스를 구성하고, 검증 프로세스를 활용한 손실 함수를 설계하여 적합한 메타 가중치를 학습하는 방법을 제시한다. 본 논문에서 제안하는 시스템은 다수의 속성을 조합하여 활용하므로 추천 결과가 과도하게 특수화 되지 않을 수 있으며, 메타 가중치라는 요소를 통해 더욱 개인화 된 추천을 제공할 수 있다.
Recommendation systems analyze user preferences and recommend items to a user by predicting the user's preference for those items. Among various kinds of recommendation methods, collaborative filtering(CF) has been widely used and successfully applied to practical applications. However, collaborative filtering has two inherent problems: data sparseness and the cold-start problems. If there are few known preferences for a user, it is difficult to find many similar users, and therefore the performance of recommendation is degraded. This problem is more serious when a new user is first using the system. In this paper we propose a method of integrating additional feature information of users and items into CF to overcome the difficulties caused by sparseness and improve the accuracy of recommendation. In our method, we first fill in unknown preference values by using the probability distribution of feature values, then generate the top-N recommendations by applying collaborative filtering on the modified data. We call this method of filling unknown preference values as data blurring. Several experimental results that show the effectiveness of the proposed method are also presented.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.