• Title/Summary/Keyword: 사용자 리뷰 분석

Search Result 154, Processing Time 0.021 seconds

Location Recommendation Customize System Using Opinion Mining (오피니언마이닝을 이용한 사용자 맞춤 장소 추천 시스템)

  • Choi, Eun-jeong;Kim, Dong-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.11
    • /
    • pp.2043-2051
    • /
    • 2017
  • Lately, In addition to the increased interest in the big data field, there is also a growing interest in application fields through the processing of big data. Opinion Mining is a big data processing technique that is widely used in providing personalized service to users. Based on this, in this paper, textual review of users' places is processed by Opinion mining technique and the sentiment of users was analyzed through k-means clustering. The same numerical value is given to users who have a similar category of sentiment classified as a clustering operation. We propose a method to show recommendation contents to users by predicting preference using collaborative filtering recommendation system with assigned numerical values and marking contents with markers on the map in order of places with high predicted value.

Investigating the Factors Influencing the Use of Live Commerce in the Un-tact Era: Focusing on Multidimensional Interactivity, Presence, and Review Credibility (언택트 시대 라이브 커머스 이용 활성화 영향요인 고찰: 다차원적 상호작용성, 현장감, 리뷰 신뢰도를 중심으로)

  • Lee, Ae Ri
    • Knowledge Management Research
    • /
    • v.22 no.1
    • /
    • pp.269-286
    • /
    • 2021
  • As the un-tact and on-tact consumption culture has proliferated due to the impact of COVID-19, 'live commerce', a form of shopping while communicating with customers through real-time streaming broadcasting, is emerging in the commerce and distribution industry. Live commerce provides an environment where customers can get the convenience of online shopping and enjoy un-tact shopping more realistically while communicating with the broadcaster in real time, as if purchasing directly from an offline store. Therefore, purchases using live commerce are expected to increase further. In this study, based on the characteristics of live commerce, the main factors influencing the increase in purchase intention through live commerce were derived and their influences were verified. In particular, this study examined these factors in multiple dimensions with focusing on strong interactivity, realistic presence, and providing detailed reviews with high credibility for products as the features of live commerce. This research collected sample data from actual users of live commerce and empirically analyzed the significance of the factors influencing the purchase increase of live commerce, thereby providing implications for knowledge management in a newly changed commerce environment in the un-tact era.

Brand Platformization and User Sentiment: A Text Mining Analysis of Nike Run Club with Comparative Insights from Adidas Runtastic (텍스트마이닝을 활용한 브랜드 플랫폼 사용자 감성 분석: 나이키 및 아디다스 러닝 앱 리뷰 비교분석을 중심으로)

  • Hanna Park;Yunho Maeng;Hyogun Kym
    • Knowledge Management Research
    • /
    • v.25 no.1
    • /
    • pp.43-66
    • /
    • 2024
  • In an era where digital technology reshapes brand-consumer interactions, this study examines the influence of Nike's Run Club and Adidas' Runtastic apps on loyalty and advocacy. Analyzing 3,715 English reviews from January 2020 to October 2023 through text mining, and conducting a focused sentiment analysis on 155 'recommend' mentions, we explore the nuances of 'hot loyalty'. The findings reveal Nike as a 'companion' with an emphasis on emotional engagement, versus Runtastic's 'tool' focus on reliability. This underscores the varied consumer perceptions across similar platforms, highlighting the necessity for brands to integrate user preferences and address technical flaws to foster loyalty. Demonstrating how customized technology adaptations impact loyalty, this research offers crucial insights for digital brand strategy, suggesting a proactive approach in app development and management for brand loyalty enhancement

User Experience Analysis and Management Based on Text Mining: A Smart Speaker Case (텍스트 마이닝 기반 사용자 경험 분석 및 관리: 스마트 스피커 사례)

  • Dine Yeon;Gayeon Park;Hee-Woong Kim
    • Information Systems Review
    • /
    • v.22 no.2
    • /
    • pp.77-99
    • /
    • 2020
  • Smart speaker is a device that provides an interactive voice-based service that can search and use various information and contents such as music, calendar, weather, and merchandise using artificial intelligence. Since AI technology provides more sophisticated and optimized services to users by accumulating data, early smart speaker manufacturers tried to build a platform through aggressive marketing. However, the frequency of using smart speakers is less than once a month, accounting for more than one third of the total, and user satisfaction is only 49%. Accordingly, the necessity of strengthening the user experience of smart speakers has emerged in order to acquire a large number of users and to enable continuous use. Therefore, this study analyzes the user experience of the smart speaker and proposes a method for enhancing the user experience of the smart speaker. Based on the analysis results in two stages, we propose ways to enhance the user experience of smart speakers by model. The existing research on the user experience of the smart speaker was mainly conducted by survey and interview-based research, whereas this study collected the actual review data written by the user. Also, this study interpreted the analysis result based on the smart speaker user experience dimension. There is an academic significance in interpreting the text mining results by developing the smart speaker user experience dimension. Based on the results of this study, we can suggest strategies for enhancing the user experience to smart speaker manufacturers.

Suggestion of development for domestic game market through big data analysis of global game trend (글로벌 게임 트렌드의 빅데이터 분석을 통한 국내 게임 시장의 발전 방향성 제시)

  • Song, Junhyup;Lim, Minwoo;Kim, Hansoo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.161-164
    • /
    • 2022
  • 게임 산업은 기술의 발전과 비대면 서비스 수요 증가로 해마다 발전하고 있다. 본 연구는 사용자들의 수요를 조사하기 위하여 대중성이 가장 높은 온라인 게임 플랫폼에서 이용 시간이 많은 게임 정보를 확인하였다. HTML 파싱(parsing) 라이브러리를 통해 해당 게임들의 리뷰를 크롤링하여 엑셀 파일로 데이터베이스화하였고, 자연어 처리 라이브러리를 활용하여 데이터를 정제하였다. 총 5개 장르에 대하여 분석한 결과 각 장르에 해당하는 대표적인 키워드를 확인할 수 있었다. 취득한 키워드는 범용 시각화 패키지를 활용하여 워드 클라우드 형태로 한눈에 알아볼 수 있도록 시각화하였다.

  • PDF

Customized Recipe Recommendation System Implemented in the form of a Chatbot (챗봇 형태로 구현한 사용자 맞춤형 레시피 추천 시스템)

  • Ahn, Ye-Jin;Cho, Ha-Young;Kang, Shin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.543-550
    • /
    • 2020
  • Interest in food recipe retrieval systems has been increasing recently. Most computer-based recipe retrieval systems are searched by cooking name or ingredient name. Since each recipe provides information in different weighing units, recalculations to the desired amount are necessary and inconvenient. This paper introduces a computer system that addresses these inconveniences. The system is a chatbot system, based on web-based recipe recommendations, for users familiar with the use of messenger conversation systems. After selecting the most popular recipes by their names, and pre-processing to extract only information required for the recipes, the system recommends recipes based on the 100,000 data. Recipes are then searched by the names of food ingredients (included and excluded). Recalculations are performed based on the number of servings entered by the user. A satisfaction rate for the systems' recommendations was 90.5%.

Analysis of Topic Changes in Metaverse Application Reviews Before and After the COVID-19 Pandemic Using Causal Impact Analysis Techniques (Causal Impact 분석 기법을 접목한 COVID-19 팬데믹 전·후 메타버스 애플리케이션 리뷰의 토픽 변화 분석)

  • Lee, Sowon;Mijin Noh;MuMoungCho Han;YangSok Kim
    • Smart Media Journal
    • /
    • v.13 no.1
    • /
    • pp.36-44
    • /
    • 2024
  • Metaverse is attracting attention as the development of virtual environment technology and the emergence of untact culture due to the COVID-19 pandemic. In this study, by analyzing users' reviews on the "Zepeto" application, which has recently attracted attention as a metaverse service, we tried to confirm changes in the requirements for the metaverse after the COVID-19 pandemic. To this end, 109,662 reviews of "Zepeto" applications written on the Google Play Store from September 2018 to March 2023 were collected, topics were extracted using LDA topic modeling technique, and topics were analyzed using the Causal Impact technique to examine how topics changed before and after based on "March 11, 2020" when the COVID-19 pandemic was declared. As a result of the analysis, five topics were extracted: application functional problems (topic1), security problems (topic 2), complaints about cryptocurrency (Zem) in the application (topic 3), application performance (topic 4), and personal information-related problems (topic 5). Among them, it was confirmed that security problems (topic 2) were most affected by the COVID-19 pandemic.

Analyzing Impact Factors of User Resistance to Accepting Paid Mobile Application (유료 모바일 애플리케이션 수용 저항 요인에 관한 분석)

  • Song, Seong-Beom;Kang, Ju-Young;Lee, Sang-Gun
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.4
    • /
    • pp.361-375
    • /
    • 2013
  • While the mobile application market is growing fast, the revenues of the majority apps are declining. Moreover, paid mobile application prices and purchases have been slow because of intensifying competition. However, the conventional studies focused only on the acceptance factor of mobile applications, so they cannot explain the phenomenon such as acceptance resistance for paid mobile applications. Therefore, our study tries to analyze the factors for the acceptance resistance of users for paid mobile applications. The research model in this paper, which is based on S-O-R model, verified through surveys how social influence and app characteristics affect user perception and how user perception affects to app resistance. The results of our study showed that paid mobile applications happened to be destroyed in front of the chasm because of the perceived loss. Consequently, the results implicate that the developers should lower the initial price and actively react to the negative reviews in order to lower the perceived loss. Moreover, the results verified that a sense of self-efficacy can lower application acceptance resistance by including personal properties to our research model as control variables.

Overview of VR Media Technology and Methods to Reduce Cybersickness (가상현실 미디어 기술동향과 VR 멀미저감 방안)

  • Mun, Sungchul;Whang, Mincheol;Park, Sangin;Lee, Dong Won;Kim, Hong-Ik
    • Journal of Broadcast Engineering
    • /
    • v.23 no.6
    • /
    • pp.800-812
    • /
    • 2018
  • In this study, we reviewed recent trends for enhancing human cognitive accessibility to social VR platform. We also proposed a practical method to predict VR sickness and improve the cognitive accessibility. In doing so, we investigated subtle changes in human body sway unconsciously made before, during, and after being exposed to extreme VR experience. The scientific assumption that VR sickness would be correlated with the subtle changes in body sway was validated. We found that participants who showed sensitive changes in the body sway before VR experience, felt more severe VR sickness than others. The findings can be practically applied in predicting susceptibility to VR sickness prior to VR experiences.

Web Contents Mining System for Real-Time Monitoring of Opinion Information based on Web 2.0 (웹2.0에서 의견정보의 실시간 모니터링을 위한 웹 콘텐츠 마이닝 시스템)

  • Kim, Young-Choon;Joo, Hae-Jong;Choi, Hae-Gill;Cho, Moon-Taek;Kim, Young-Baek;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.68-79
    • /
    • 2011
  • This paper focuses on the opinion information extraction and analysis system through Web mining that is based on statistics collected from Web contents. That is, users' opinion information which is scattered across several websites can be automatically analyzed and extracted. The system provides the opinion information search service that enables users to search for real-time positive and negative opinions and check their statistics. Also, users can do real-time search and monitoring about other opinion information by putting keywords in the system. Proposing technique proved that the actual performance is excellent by comparison experiment with other techniques. Performance evaluation of function extracting positive/negative opinion information, the performance evaluation applying dynamic window technique and tokenizer technique for multilingual information retrieval, and the performance evaluation of technique extracting exact multilingual phonetic translation are carried out. The experiment with typical movie review sentence and Wikipedia experiment data as object as that applying example is carried out and the result is analyzed.