• Title/Summary/Keyword: 뿌리 스트레스

Search Result 139, Processing Time 0.034 seconds

Comparison on the Changes in Non-structural Carbohydrate Concentration with Regard to Cold Tolerance of Zoysiagrass and Creeping Bentgrass (월동 기간 중 Zoysiagrass와 Creeping Bentgrass의 비구조 탄수화물 농도의 변화 비교)

  • Kim Dae Hyun;Jung Woo Jin;Lee Bok Rye;Kim Eun Ju;Kim Kil Yong;Kim Tae Hwan
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.1
    • /
    • pp.57-64
    • /
    • 2005
  • 월동기간 동안 zoysiagrass[Zoysia matrella(L.) Merr]와 creeping bentgrass(Agrostis palustris Hunds)의 저온 스트레스에 대한 탄수화물 대사 반응을 구명하기 위해 11월부터 이듬해 4월까지의 식물체내의 탄수화물 대사산물의 변화를 비교 분석하였다. Creeping bentgrass의 녹색도와 뿌리 성장은 온도변화와 거의 평행하게 변화하였으나 zoysiagrass는 뿌리 성장에 거의 변화가 없이 3월 말까지 담황색을 나타냈다. 11월부터 이듬해 1월까지 zoysiagrass에서 glucose와 sucrose 함량은 크게 높았고, 1월에서 4월까지 starch를 제외한 모든 탄수화물 화합물들의 감소의 정도가 현저하게 낮았다. Reeping bentgrass에서 fructan의 depolymerization이 2월 이후 단당류와 이당류의 감소와 일치했으나 zoysiagrass에서는 starch 가수분해가 11월부터 일찍이 시작되었다. 이상의 결과들은 creeping bentgrass와 비교 했을때 zoysisagrass 뿌리의 높은 비구조적 탄수화물의 농도가 저온 내성과 밀접한 관계가 있음을 잘 나타내어 주고 있다.

Growth Promotion of Tomato Plant under Drought Conditions by Treatment of Rhizobacteria Producing ACC Deaminase and Phytohormones (ACC Deaminase와 식물호르몬 생성 세균 처리에 의한 토마토 식물의 가뭄 조건에서의 생장)

  • Seo, Mi-So;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.46-50
    • /
    • 2013
  • Some rhizobacteria producing 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase can make plant to continue growth under the stress conditions through lowering the level of phytohormone, ethylene which inhibits the plant growth and accelerates plant aging. In this study, some rhizobacteria producing ACC deaminase have been isolated from the rhizosphere of plants grown at sand beaches, and identified as Escherichia hermannii m-2, Enterobacter asburiae m-4, Pseudomonas thivervalensis BD2-26 and Pseudomonas brassicacearum subsp. neoaurantiaca BD3-35 through sequencing of 16S rRNA genes. Strain BD3-35 showed the highest activity of ACC deaminase among the isolates, 20.26 ${\alpha}$-ketobutyrate ${\mu}M/mg$ protein/h. Strains BD3-35 and BD2-26 secreted a phytohormone cytokinin, and strains m-4 and m-2 could produce auxin and abscisic acid, respectively. When these bacteria were applied to the 7-day old tomato plant under drought stress for 7 days, strains BD3-35, m-2, and m-4 increased the length of tomato root by 14, 15, and 35%, respectively, and strains m-2, BD2-26 and BD3-35 increased the dry weight of tomato plant by 22, 33, and 68%, respectively compared to the uninoculated control tomatoes. Therefore, these rhizobacteria may be utilized as a microbial fertilizer for the plants under drought stress.

Physiological Responses for Soil Water Stresses in 'Mihong' Peach Tree (복숭아 '미홍'의 토양 수분 스트레스에 따른 생리반응)

  • Kwon, Yong Hee;Lee, Jae Man;Han, Hyun Hee;Ryu, Suhyun;Jeong, Jae Hoon;Do, Gyung-Ran;Han, Jeom Hwa;Lee, Han-Chan;Park, Hee-Seung
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.255-261
    • /
    • 2016
  • The present study was conducted to characterize physiological responses of aerial part according to soil water stresses in 'Mihong' peach trees. Discolorations, wilting and falling of leaves were observed in chronological order as response for waterlogging and no irrigation and the phenomena started from basal to end of shoots. Shoot growth in elongation and thickness decreased and fallen leaves were severe in waterlogged trees. Function of water uptake by roots and photosynthesis and leaf respiration decreased by waterlogging. Leaf chlorophyll contents decreased in both treatments. In waterlogging treatment, decrease of chlorophyll was observed in normal leaves with waterlogging using light microscopy. Starch content was lower in both treatment and carbohydrate content was lower in root with waterlogging. These results demonstrated that waterlogging weakened the function of soil water uptake and movement and decreased photosynthesis and fallen leaves. Finally the peach trees would wither or suffer low temperature damage through the shortage of reserve accumulations. We suggested that waterlogging damage in peach trees could be reduced to take notice of irrigation and install drainage facility to improve soil condition.

Physiological Responses of Warm-Season Turfgrasses under Deficit Irrigation (소량관수로 인한 난지형 잔디의 생리적 반응)

  • Lee, Joon-Hee;Trenholm, Laurie. E.;Unruh, J. Bryan
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.9-22
    • /
    • 2009
  • Due to increasing concerns over issues with both water quantity and quality for turfgrass use, research was conducted to determine the response of five warm-season turfgrasses to deficit irrigation and to gain a better understanding of relative drought tolerance. St. Augustinegrass(Stenotaphrum secundatum [Walt.] Kuntze.) cultivars 'Floratam' and 'Palmetto', 'SeaIsle 1' seashore Paspalum(Paspalum vaginatumSwartz.), 'Empire' zoysiagrass(Zoysia japonica Steud.), and 'Pensacola' bahiagrass(Paspalum notatum Flugge) were established in lysimeters in the University of Florida Envirotron greenhouse facility in Gainesville. Irrigation was applied at100%, 80%, 60%, or 40% of evapotranspiration(ET). Evaluations included: a) shoot quality, leaf rolling, leaf firing; b) leaf relative water content(RWC), soil moisture content, chlorophyll content index(CCI), canopy photosynthesis(PS); c) multispectral reflectance(MSR); d) root distribution; and e) water use efficiency. Grasses irrigated at 100% and 80% of ET had no differences in visual quality, leaf rolling, leaf firing, RWC, CCI, and PS. Grasses irrigated at 60% of ET had higher values in physiological aspects than grasses irrigated at 40% of ET. 'Sealsle 1' and 'Palmetto' had a deeper root system than 'Empire' and 'Pensacola', while 'Floratam' had the least amount of root mass. Photosynthesis was positively correlated with visual assessments such as turf quality, leaf rolling, leaf firing, and sensor-based measurements such as CCI, soil moisture, and MSR. Reducing the amount of applied water by 20% did not reduce turfgrass quality and maintained acceptable physiological functioning.

Physiological Response of Chinese Cabbage to Salt Stress (염 스트레스에 대한 배추의 생리학적 반응)

  • Kim, Ju-Sung;Shim, Ie-Sung;Kim, Myong-Jo
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.343-352
    • /
    • 2010
  • In order to understand the plant responses to salt stress (0, 50, and 100 mM NaCl), Chinese cabbage seedlings grown up to two leaf stages by hydroponic culture were used. Fresh and dry weight, chlorophyll (Chl), antioxidant materials, polyamine content, antioxidant enzyme activities, and inorganic ion level were evaluated. Fresh and dry weights of Chinese cabbage increased with the increase in salinity while the optimal growth occurred at 50 mM NaCl. The Chl a, total Chl, carotenoid content, and Chl a/b ratio increased by the 6 days after treatment with 100 mM NaCI; however, the Chl b content decreased. Glutathione increased in the root of Chinese cabbage for 6 days. Dehydroascorbate increased remarkably by day 6 caused by the salt stress in both leaf and the root. While ascorbate peroxidase increased, the activity of catalase and glutathione reductase decreased gradually in the first leaf for 6 days. The $Na^+$ content increased by 12.5-fold in the 3 days after treatment with 100 mM NaCI in the shoot, whereas the $Ca^{2+}$, $K^+$, and $Mg^{2+}$ content measured in the same treatment decreased by 43 to 57%. Spermidine content decreased as salinity increased, but spermine content increased. The growth promotion, glutathione and ascorbic acid content in Chinese cabbage were increased by low salt stress, and shortening of the cultivation period for growth increase of Chinese cabbage is expected.

Isolation and Characterization of a Nitric Oxide-induced Gene in Sweetpotato (고구마에서 질소 유도성 유전자의 분리 및 특성분석)

  • Lee, Il Hwan;Shim, Donghwan;Lee, Kang Lok;Nam, Ki Jung;Lee, Shin-Woo;Kim, Yun-Hee
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.631-636
    • /
    • 2019
  • A new nitric oxide-induced (NOI) gene was isolated by screening ESTs from a cDNA library of dehydration-treated fibrous roots of sweetpotato (Ipomoea batatas). The 720 bp cDNA fragment, IbNOI, was sequenced, from which a 77 amino acid residue protein was deduced. A search of the protein BLAST database identified significant similarity to other plant NOI protein sequences. Quantitative RT-PCR analysis revealed diverse expression patterns of IbNOI in various tissues of the intact sweetpotato plant, and in leaves exposed to different stresses. The IbNOI gene was highly expressed in storage roots and suspension-cultured cells. In leaf tissues, IbNOI showed strong expression during sodium nitroprusside (SNP)-induced NO accumulation and chemical stress treatments. Expression of IbNOI was also induced under various abiotic stress conditions, such as dehydration, salt, and bacterial pathogen infection. These results suggest that IbNOI is involved in plant responses to diverse abiotic stresses and pathogen infection through a NO-related pathway.

Aluminum-induced Root Growth Inhibition and Impaired Plasma Membrane $H^+-flux$ in Mung Bean (알루미늄에 의한 녹두 뿌리의 생장 억제와 원형질막 $H^+-flux$의 손상)

  • Ahn, Sung-Ju;Kim, Yu-Sun;Park, Won;Ku, Yang-Gyu;Min, Kyung-Soo;Whang, Tei-Ik
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.2
    • /
    • pp.213-219
    • /
    • 2007
  • It has been well established that aluminum (Al) inhibits root tip growth rapidly in acid soil. We report the correlation between Al induced growth inhibition and impaired $H^+-flux$ in mung bean (Vigna radiate L. cv. Kumsung). The root growth inhibition was dependent on Al concentration (0, 10, 25, 50, $100{\mu}M$) and exposure time (12 and 24 h). Using Hematoxylin staining, it was observed that the root damage was occurred preferentially in regions with high Al accumulation. Using the pH indicator, it was shown that the surface pH of root tip was strongly alkalized in the control whereas changed only slightly in the $50{\mu}M$ Al-treated root. The $H^+-ATPase$ activity of plasma membrane vesicles was inhibited by 56% in the Al-treated roots compared to control root. Decrease in the amount of the plasma membrane $H^+-ATPase$ (100 kDa) translation in the plant roots under Al stress was demonstrated by Western blot analysis. These results indicate that the dynamics of $H^+-flux$ across the root tip play an important role in root growth under Al stress.

Effects of Mycorrhizal Inoculation on Plant Growth and N Metabolites in Relation to drought-stress Tolerance (Mycorrhiza 접종이 가뭄 스트레스하의 식물성장과 질소 대사산물에 미치는 영향)

  • Lee, Bok-Rye;Jung, Woo-Jin;Kim, Dae-Hyun;Kim, Kil-Yong;Shon, Bo-Kyoon;Kim, Tae-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.5
    • /
    • pp.314-325
    • /
    • 2002
  • The effects of arbuscular mycorrhizal (AM) fungus (Glomus intraradices) on plant growth and N metabolic responses were examined in perennial ryegrass plants exposed to drought-stressed or well-watered condition. Mycorrhizal inoculation improved significantly leaf water potential, dry mass and P content. Drought stress increased significantly nitrate concentration in roots where the increase was much less in AM than non-AM. Drought stress decreased the concentration of soluble proteins in non-AM shoots, whereas non-significant decline occurred in AM shoots even under drought condition. The concentrations of ammonia and proline in drought stressed non-AM plants significantly increased, while mycorrhizal inoculation lowered significantly ammonia and proline accumulation. The decrease in leaf dry weight in drought stressed-plants was significantly correlated to the increase in ammonia (p<0.01) and proline concentration (p<0.01). These results suggested that the increased P content and N assimilation by mycorrhizal inoculation may be associated with drought stress tolerance, showing the moderating effects on shoot growth inhibition and ammonia accumulation in drought stressed-plants.

The Effect of Soil Moisture Stress on the Growth of Barley and Grain Quality (토양수분 스트레스가 보리생육 및 종실품질에 미치는 영향)

  • Park, Moo-Eon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.2
    • /
    • pp.165-175
    • /
    • 1995
  • To determine the effect of soil moisture stress on growth of barley and grain quality, a pot experiment was carried out for two barley varieties(Olbori and Chogangbori) by using large plastic pot(52cm in diameter and 55cm in depth) filled with sandy loam soil under rain-controlled open green house. By means of measuring soil water potential with micro tensiometer and gypsum block installed at 10cm in soil depth, soil moisture was controlled by sub-irrigation at several irigation points such as -0.05bar, -0.2bar, -0.5bar, -1.0bar, -5.0bar and -10.0bar in soil water potential. The lower soil water potential was controlled, the shorter length of stem and internode became, and the more narrow stem diameter was. Leaf area was significantly decreased when soil water potential was controlled lower than -0.5bar, although chlorophyll content of flag and first leaves was not changed so much. Weight of grain and ear was significantly decreased when soil water potential was lower than -5.0bar and the highest grain yield was obtaind in a plot where soil water potential was controlled at -0.2bar. However, the most efficient water use of Olbori and Chogangbori was obtained at -0.5bar and -1.0bar in water potentials, respectively. Crude protain content, maximum viscosity, consistency and ${\beta}$-glucan content of barley flour increased as soil water potential significantly decreased, especially below -5.0bar, but gelatination temperature decreased as soil water potential decreased.

  • PDF

Functional characterization of Arabidopsis thaliana BLH 8, BEL1-Like Homeodomain 8 involved in environmental stresses (환경 스트레스에 관여하는 애기장대 BLH 8, BEL1-Like Homeodomain 8의 기능 분석)

  • Park, Hyeong-Cheol;Park, Ji-Young;Baek, Dong-Won;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.162-168
    • /
    • 2011
  • High salinity is a common stress condition that adversely affects plant growth and crop production. In response to various environmental stresses, plants activate a number of defense genes that function to increase the tolerance. To isolate Arabidopsis genes that are involved in abiotic stress responses, we carried out genetic screening using various mutant lines. Among them, the blh8 ($\b{B}$EL1-$\b{L}$ike $\b{H}$omeodomain $\underline{8}$) mutant specifically shows chlorotic phenotypes to ionic (specifically, $Na^+$ and $K^+$) stresses, but no differences in root growth. In addition, BLH8 is related to plant development and abiotic stress as predicted by a Graphical Gaussian Model (GGM) network program. It implies that BLH8 functions as a putative transcription factor related to abiotic stress responses. Collectively, our results show that gene network analysis is a useful tool for isolating genes involved in stress adaptation in plants.