DOI QR코드

DOI QR Code

Functional characterization of Arabidopsis thaliana BLH 8, BEL1-Like Homeodomain 8 involved in environmental stresses

환경 스트레스에 관여하는 애기장대 BLH 8, BEL1-Like Homeodomain 8의 기능 분석

  • Park, Hyeong-Cheol (Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Park, Ji-Young (Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Baek, Dong-Won (Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University) ;
  • Yun, Dae-Jin (Division of Applied Life Science (BK21 program) and Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
  • 박형철 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 박지영 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 백동원 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소) ;
  • 윤대진 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작 연구소)
  • Received : 2011.04.08
  • Accepted : 2011.04.30
  • Published : 2011.06.30

Abstract

High salinity is a common stress condition that adversely affects plant growth and crop production. In response to various environmental stresses, plants activate a number of defense genes that function to increase the tolerance. To isolate Arabidopsis genes that are involved in abiotic stress responses, we carried out genetic screening using various mutant lines. Among them, the blh8 ($\b{B}$EL1-$\b{L}$ike $\b{H}$omeodomain $\underline{8}$) mutant specifically shows chlorotic phenotypes to ionic (specifically, $Na^+$ and $K^+$) stresses, but no differences in root growth. In addition, BLH8 is related to plant development and abiotic stress as predicted by a Graphical Gaussian Model (GGM) network program. It implies that BLH8 functions as a putative transcription factor related to abiotic stress responses. Collectively, our results show that gene network analysis is a useful tool for isolating genes involved in stress adaptation in plants.

고염 스트레스는 식물의 성장과 수확량에 치명적인 영향을 야기한다. 그와 같은, 환경 스트레스에 의하여 식물은 다양한 유전자의 발현으로 저항성을 가지게 하는 기작이 발달되어 있다. 본 연구에서는 애기장대에서 다양한 환경 스트레스에 관여하는 유전자를 분리할 목적으로 GGM(Graphical Gaussian Model) program을 사용한 후, BLH8(BEL1-Like Homeodomain Gene 8) 유전자의 돌연변이 식물체를 구축하였다. atblh8-1 돌연변이체는 고농도의 $Na^+$$K^+$ 이온에 특이적으로 백화현상을 보이지만, 뿌리 성장에는 변화를 보이지 않았다. 그러므로, BLH8 단백질은 $Na^+$$K^+$과 같은 환경스트레스 저항성에 관여하는 중요한 인자임을 시사한다. 이와 같이, GGM program은 환경 스트레스에 관여하는 유전자를 분리하기 위한 유용한 도구일 것으로 사려된다.

Keywords

References

  1. Becker A, Bey M, Bürglin TR, Saedler H, Theissen G (2002) Ancestry and diversity of BEL1-like homeobox genes revealed by gymnosperm (Gnetum gnemon) homologs. Dev Genes Evol 212:452-457 https://doi.org/10.1007/s00427-002-0259-7
  2. Chan RL, Gago GM, Palena CM, Gonzalez DH (1998) Homeoboxes in plant development. Biochim Biophys Acta 1442:1-19 https://doi.org/10.1016/S0167-4781(98)00119-5
  3. Chen H, Rosin FM, Prat S, Hannapel DJ (2003) Interacting transcription factors from the three-amino acid loop extension superclass regulate tuber formation. Plant Physiol 132:1391-1404 https://doi.org/10.1104/pp.103.022434
  4. Cole M, Nolte C, Werr W (2006) Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete subdomains of the shoot apical meristem of Arabidopsis thaliana. Nucl Acids Res 34:1281-1292 https://doi.org/10.1093/nar/gkl016
  5. Dong YH, Yao JL, Atkinson RG, Putterill JJ, Morris BA, Gardner RC (2000) MDH1: an apple homeobox gene belonging to the BEL1 family. Plant Mol Biol 42:623-633 https://doi.org/10.1023/A:1006301224125
  6. Gehring WJ (1987) Homeoboxes in the study of development. Science 236:1245-1252 https://doi.org/10.1126/science.2884726
  7. Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826-839 https://doi.org/10.1111/j.1365-313X.2005.02587.x
  8. Himmelbach A, Hoffmann T, Leube M, Hohener B, Grill E (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J 21:3029-3038 https://doi.org/10.1093/emboj/cdf316
  9. Hung CY, Lin Y, Zhang M, Pollock S, Marks MD, Schiefelbein J (1998) A common position-dependent mechanism controls cell-type patterning and GLABRA2 regulation in the root and hypocotyls epidermis of Arabidopsis. Plant Physiol 117:73-84 https://doi.org/10.1104/pp.117.1.73
  10. Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045-3054
  11. Korfhage U, Trezzini GF, Meier I, Hahlbrock K, Somssich IE (1994) Plant homeodomain protein involved on transcriptional regulation of a pathogen defense-related gene. Plant Cell 6: 695-708 https://doi.org/10.1105/tpc.6.5.695
  12. Krysan PJ, Young JC, Tax F, Sussman MR (1996) Identification of transferred DNA insertions within Arabidopsis genes involved in signal transduction and ion transport. Proc. Natl. Acad. Sci. USA. 93:8145-8150 https://doi.org/10.1073/pnas.93.15.8145
  13. Luo H, Song F, Goodman RM, Zheng Z (2005) Up-regulation of OsBIHD1, a rice gene encoding BELL homeodomain transcriptional factor, in disease resistance responses. Plant Biol 7: 459-468 https://doi.org/10.1055/s-2005-865851
  14. Ma S, Gong Q, Bohnert HJ (2007) An Arabidopsis gene network based on the graphical Gaussian model. Genome Res 17: 1614-1625 https://doi.org/10.1101/gr.6911207
  15. Mayda E, Tornero P, Conejero V, Vera P (1999) A tomato homeobox gene (HD-zip) is involved in limiting the spread of programmed cell death. Plant J 20:591-600 https://doi.org/10.1046/j.1365-313X.1999.00633.x
  16. Muller J, Wang Y, Franzen R, Santi L, Salamini F, Rohde W (2001) In vitro interactions between barley TALE homeodomain proteins suggest a role for protein-protein associations in the regulation of Knox gene function. Plant J 27:13-23 https://doi.org/10.1046/j.1365-313x.2001.01064.x
  17. Mussig C, Kauschmann A, Clouse SD, Altmann T (2000) The Arabidopsis PHD-finger protein SHL is required for proper development and fertility. Mol Gen Genet 264:363-370 https://doi.org/10.1007/s004380000313
  18. Ohashi Y, Oka A, Rodrigues-Pousada R, Possenti M, Ruberti I, Morelli G, Aoyama T (2003) Modulation of phospholipids signaling by GLABRA2 in root-hair pattern formation. Science 300:1427-1430 https://doi.org/10.1126/science.1083695
  19. Otting G, Qian YQ, Billeter M, Muller M, Affolter M, Gehring WJ, Wuthrich K (1990) Protein-DNA contacts in the structure of a homeodomain-DNA complex determined by nuclear magnetic resonance spectroscopy in solution. EMBO J 9:3085-3092
  20. Park HC, Kim ML, Lee SM, Bahk JD, Yun D-J, Lim CO, Hong JC, Lee SY, Cho MJ, Chung WS (2007) Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter. Nucl Acids Res 35:3612-3623 https://doi.org/10.1093/nar/gkm273
  21. Paterson AH, Bowers JE, Chapman BA, Peterson DG, Rong J, Wicker TM (2004) Comparative genome analysis of monocots and dicots, toward characterization of angiosperm diversity. Curr Opin Biotechnol 15:120-125 https://doi.org/10.1016/j.copbio.2004.03.001
  22. Reiser L, Modrusan Z, Margossian L, Samach A, Ohad N, Haughn GW, Fisher RK (1995) The BELL1 gene encodes a homeodomain protein involved in pattern formation in the Arabidopsis ovule primordium. Cell 83:735-742 https://doi.org/10.1016/0092-8674(95)90186-8
  23. Rhoades JD, Loveday J (1990) Salinity in irrigated agriculture. In: American Society of Civil Engineers, Irrigation of Agricultural Crops (Steward, B. A. and Nielsen, D. R. eds). Am. Soc. Agronomists, Monograph 30:1089-1142
  24. Sentoku N, Sato Y, Matsuoka M (2000) Overexpression of rice OSH genes induces ectopic shoots on leaf sheaths of transgenic rice plants. Developmental Biol 220:358-364 https://doi.org/10.1006/dbio.2000.9624
  25. Soderman E, Hjellstrom M, Fahleson J, Engstrom P (1999) The HD-Zip gene ATHB6 in Arabidopsis is expressed in developing leaves, roots and carpels and up-regulated by water deficit conditions. Plant Mol Biol 40:1073-1083 https://doi.org/10.1023/A:1006267013170
  26. Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135:1697-1709 https://doi.org/10.1104/pp.104.039909
  27. Wenzel CL, Schuetz M, Yu Q, Mattsson J (2007) Dynamics of MONOPTEROS and PIN-FORMED1 expression during leaf vein pattern formation in Arabidopsis thaliana. Plant J 49: 387-398 https://doi.org/10.1111/j.1365-313X.2006.02977.x
  28. Western TL, Haughn GW (1999) BELL1 and AGAMOUS genes promote ovule identity in Arabidopsis thaliana. Plant J 18: 329-336 https://doi.org/10.1046/j.1365-313X.1999.00448.x
  29. Wu X, Ye Y, Subramanian K (2003) Interactive analysis of gene interactions using graphical gaussian model. In: Proceedings of theACMSIGKDD Workshop on Data Mining in Bioinformatics. 3:63-69
  30. Yun D-J (2005) Molecular mechanism of plant adaption to high salinity. Korean J Plant Biotechnol 32:1-14 https://doi.org/10.5010/JPB.2005.32.1.001

Cited by

  1. Characterization of small ubiquitin-like modifier E3 ligase, OsSIZ1, mutant in rice vol.39, pp.4, 2012, https://doi.org/10.5010/JPB.2012.39.4.235