• Title/Summary/Keyword: 빅데이터플랫폼

Search Result 483, Processing Time 0.035 seconds

IoT를 사용한 라이프로그 빅데이터기반 라이프스타일 (생활패턴) 분석 및 웰니스 예측케어 서비스시스템

  • Jo, Wi-Deok;Yang, Seung-Guk;Choe, Seon-Tak;Baek, Jae-Sun;Min, Myeong-Gi;Lee, Yeong-Gwon;Park, Gyeong-Chan;Lee, Gyu-Pil
    • Information and Communications Magazine
    • /
    • v.31 no.12
    • /
    • pp.17-24
    • /
    • 2014
  • 빅데이터, IoT, 클라우드 인프라 등 기술의 발달에 따라 일상생활 중에서도 개인과 환경의 변화에 대해 실시간 데이터 수집이 용이하게 되었다. 이를 활용하여 개인의 다양한 특성과 상황을 인지하고 다면적으로 의미를 분석할 수 있는 개인의 라이프스타일(lifestyle, 생활습관) 분석 기술이 중요하게 부각되고 있다. 이 라이프스타일 데이터는 개인의 질병이나 사회 심리적 문제의 원인 분석과 미래 트렌드의 변화예측을 할 수 있는 중요한 근거로 활용된다. 최근 이를 위한 연구로서 활동량, 스트레스, 위치, 수면 등의 라이프스타일 패턴을 추출하여 체계적인 프로세스로 삶의 질을 향상시키는 웰니스 (Wellness) 예측케어 서비스 연구와 서비스들이 활발히 진행되고 있다. 하지만 이러한 서비스를 제공하기에 앞서 개인의 복잡한 라이프스타일 패턴의 추출이 단편적으로만 이뤄지고 있어서, 패턴들 사이의 복잡한 관계를 분석하거나 연계 서비스로의 확장 및 라이프스타일 패턴의 재사용적인 측면에서의 문제가 어려운 이슈가 되고 있다. 이 때문에 웰니스 서비스의 신뢰도가 낮아 사용자가 단순히 재미로 느끼는 수준이거나 일회성에 그치는 모바일 어플리케이션 서비스를 제공받는 경우가 다반사이다. 본 논문에서는 IoT환경에서 다양한 스마트 디바이스에 의해 수집되는 라이프로그로 부터 라이프스타일 패턴 추출 및 모델링, 라이프스타일 패턴 분석으로부터 개인의 행동 추론 및 예측, 원인파악과 관련 지표를 정량적으로 설계하는 분석 엔진 개발 방안, 서비스 디자인을 통하여 실효적인 생활개선의 변화를 유도하는 기술, 개인의 심리적 특성까지 고려한 신뢰성 높은 케어 서비스 제공까지의 전반적인 웰니스 예측케어 서비스시스템 프로세스 및 플랫폼 설계 방안을 제시한다.

Social Media Bigdata Analysis Based on Information Security Keyword Using Text Mining (텍스트마이닝을 활용한 정보보호 키워드 기반 소셜미디어 빅데이터 분석)

  • Chung, JinMyeong;Park, YoungHo
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.37-48
    • /
    • 2022
  • With development of Digital Technology, social issues are communicated through digital-based platform such as SNS and form public opinion. This study attempted to analyze big data from Twitter, a world-renowned social network service, and find out the public opinion. After collecting Twitter data based on 14 keywords for 1 year in 2021, analyzed the term-frequency and relationship among keyword documents with pearson correlation coefficient using Data-mining Technology. Furthermore, the 6 main topics that on the center of information security field in 2021 were derived through topic modeling using the LDA(Latent Dirichlet Allocation) technique. These results are expected to be used as basic data especially finding key agenda when establishing strategies for the next step related industries or establishing government policies.

Business Intelligence Design for Strategic Decision Making for Small and Midium-size E-Commerce Sellers: Focusing on Promotion Strategy (중소 전자상거래 판매상의 전략적 의사결정을 위한 비즈니스 인텔리전스 설계: 프로모션 전략을 중심으로)

  • Seung-Joo Lee;Young-Hyun Lee;Jin-Hyun Lee;Kang-Hyun Lee;Kwang-Sup Shin
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.201-222
    • /
    • 2023
  • As the e-Commerce gets increased based on the platform, a lot of small and medium sized sellers have tried to develop the more effective strategies to maximize the profit. In order to increase the profitability, it is quite important to make the strategic decisions based on the range of promotion, discount rate and categories of products. This research aims to develop the business intelligence application which can help sellers of e-Commerce platform make better decisions. To decide whether or not to promote, it is needed to predict the level of increase in sales after promotion. I n this research, we have applied the various machine learning algorithm such as MLP(Multi Layer Perceptron), Gradient Boosting Regression, Random Forest, and Linear Regression. Because of the complexity of data structure and distinctive characteristics of product categories, Random Forest and MLP showed the best performance. It seems possible to apply the proposed approach in this research in support the small and medium sized sellers to react on the market changes and to make the reasonable decisions based on the data, not their own experience.

Approaches to Applying Social Network Analysis to the Army's Information Sharing System: A Case Study (육군 정보공유체계에 사회관계망 분석을 적용하기 위한방안: 사례 연구)

  • GunWoo Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.5
    • /
    • pp.597-603
    • /
    • 2023
  • The paradigm of military operations has evolved from platform-centric warfare to network-centric warfare and further to information-centric warfare, driven by advancements in information technology. In recent years, with the development of cutting-edge technologies such as big data, artificial intelligence, and the Internet of Things (IoT), military operations are transitioning towards knowledge-centric warfare (KCW), based on artificial intelligence. Consequently, the military places significant emphasis on integrating advanced information and communication technologies (ICT) to establish reliable C4I (Command, Control, Communication, Computer, Intelligence) systems. This research emphasizes the need to apply data mining techniques to analyze and evaluate various aspects of C4I systems, including enhancing combat capabilities, optimizing utilization in network-based environments, efficiently distributing information flow, facilitating smooth communication, and effectively implementing knowledge sharing. Data mining serves as a fundamental technology in modern big data analysis, and this study utilizes it to analyze real-world cases and propose practical strategies to maximize the efficiency of military command and control systems. The research outcomes are expected to provide valuable insights into the performance of C4I systems and reinforce knowledge-centric warfare in contemporary military operations.

A Performance Comparison of Machine Learning Library based on Apache Spark for Real-time Data Processing (실시간 데이터 처리를 위한 아파치 스파크 기반 기계 학습 라이브러리 성능 비교)

  • Song, Jun-Seok;Kim, Sang-Young;Song, Byung-Hoo;Kim, Kyung-Tae;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2017.01a
    • /
    • pp.15-16
    • /
    • 2017
  • IoT 시대가 도래함에 따라 실시간으로 대규모 데이터가 발생하고 있으며 이를 효율적으로 처리하고 활용하기 위한 분산 처리 및 기계 학습에 대한 관심이 높아지고 있다. 아파치 스파크는 RDD 기반의 인 메모리 처리 방식을 지원하는 분산 처리 플랫폼으로 다양한 기계 학습 라이브러리와의 연동을 지원하여 최근 차세대 빅 데이터 분석 엔진으로 주목받고 있다. 본 논문에서는 아파치 스파크 기반 기계 학습 라이브러리 성능 비교를 통해 아파치 스파크와 연동 가능한 기계 학습라이브러리인 MLlib와 아파치 머하웃, SparkR의 데이터 처리 성능을 비교한다. 이를 위해, 대표적인 기계 학습 알고리즘인 나이브 베이즈 알고리즘을 사용했으며 학습 시간 및 예측 시간을 비교하여 아파치 스파크 기반에서 실시간 데이터 처리에 적합한 기계 학습 라이브러리를 확인한다.

  • PDF

An Exploratory Study on the Management Framework of Social Media as Knowledge Creation Platform (지식 창조 플랫폼으로서의 소셜미디어 관리모델 설계를 위한 탐색 연구)

  • Kim, Sang Wook
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.7
    • /
    • pp.149-158
    • /
    • 2012
  • Much attention is being paid to social media because of their potentials to draw collective intelligence. In this context does this study attempt to draw some implications of social media as knowledge creation platform and suggest a conceptual framework of social media management. Information sharing among the public through social media literally produces profound influence throughout the society and thus not only business firms but all levels of public institutions, including government are seeking to take its advantage for various purposes such as public relations, crowd sourcing, etc. Especially considering that social media open the possibility of social knowledge creation platform in the Big Data era, this study is perhaps able to contribute to further development of social media management model together with a series of measuring indexes.

A Study on The Effect of Perceived Value and Innovation Resistance Factors on Adoption Intention of Artificial Intelligence Platform: Focused on Drug Discovery Fields (인공지능(AI) 플랫폼의 지각된 가치 및 혁신저항 요인이 수용의도에 미치는 영향: 신약 연구 분야를 중심으로)

  • Kim, Yeongdae;Kim, Ji-Young;Jeong, Wonkyung;Shin, Yongtae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.12
    • /
    • pp.329-342
    • /
    • 2021
  • The pharmaceutical industry is experiencing a productivity crisis with a low probability of success despite a long period of time and enormous cost. As a strategy to solve the productivity crisis, the use cases of Artificial Intelligence(AI) and Bigdata are increasing worldwide and tangible results are coming out. However, domestic pharmaceutical companies are taking a wait-and-see attitude to adopt AI platform for drug research. This study proposed a research model that combines the Value-based Adoption Model and the Innovation Resistance Model to empirically study the effect of value perception and resistance factors on adopting AI Platform. As a result of empirical verification, usefulness, knowledge richness, complexity, and algorithmic opacity were found to have a significant effect on perceived values. And, usefulness, knowledge richness, algorithmic opacity, trialability, technology support infrastructure were found to have a significant effect on the innovation resistance.

Mutual Authentication Scheme between Multiple Instances for Secure Data Share of Virtualized Environment (가상화 환경의 안전한 데이터 공유를 위한 다중 인스턴스간 상호인증 기법)

  • Choi, Dohyeon;Kim, Sangkun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.83-94
    • /
    • 2016
  • Recent cloud, big data, there is a problem for the architectural security vulnerability to the server platforms of various fields such as artificial intelligence occurs consistently, but using the virtualization technology. In addition, most secure virtualization technology is known to be dependent on the type is limited and the platform provider. This paper presents a method for mutual authentication for secure data between multiple instances of a shared virtualized environment. The proposed method was designing a security architecture in consideration of the mutual authentication between multiple independent instances, and enhance the safety of a security protocol for sharing data by applying a key chain techniques. Performance analysis results and the existing security architecture demonstrated that protect each virtualized instances of the session and the other way, a compliance effectiveness for each instance of the mutual authentication process.

Service Platform Design for Smart Environment Disaster Management (스마트 환경재해 관리를 위한 서비스 플랫폼 설계)

  • Weon, Dalsoo
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.3
    • /
    • pp.247-252
    • /
    • 2018
  • The problem of the environment is urgently coming to the world as a problem that humanity must solve. In particular, Korea is directly affected by air pollution and marine pollution due to its geopolitical position with China, and is also exposed to a great deal of pollution due to air, water, soil, and weather. In this situation, due to the disconnection between the management domain / service (system) related to the environment, the ability to quickly identify causes and cope with situations in the event of environmental pollution or disasters is weak, and duplication and investment are being faced. The development of a service platform for smart environment disaster management is designed to detect environmental disasters in an early stage through the management of smart environment disaster management at the national level, It will be a way to predict complex environmental disasters.

A research on the Design and Construction of Smart Environmental Protection Information Platform in Nanjing (난징시의 지능형 환경 보호 정보 플랫폼의 디자인 및 구축에 관한연구)

  • Shi, XiaoHe;Pan, Younghwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.1
    • /
    • pp.77-87
    • /
    • 2021
  • Environment is an important factor in city life. Environmental elements are a subject that must be discussed in the smart city plan, but there is still a lack of information and data sharing in the urban environment, so improvements are needed. As part of the intelligent of Nanjing, this research has made in-depth investigation into the construction and service demand of environmental information, and has carried out the research on the design and construction of intelligent information platform that conforms to Nanjing intelligent city planning, improves environmental quality and provides environmental information service. The visualization of information is also studied. The result is an important module in the construction of intelligent city in Nanjing.