• Title/Summary/Keyword: 빅데이터플랫폼

Search Result 483, Processing Time 0.023 seconds

The analysis of characteristics change according to mileage of Hybrid Electric Vehicle (하이브리드자동차의 주행거리에 따른 특성 변화 분석)

  • Woo, Ji-Young;Park, Seong-A;Yu, So-Young;Yang, In-Beom
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.443-444
    • /
    • 2019
  • 공유경제 시대의 다양한 전기구동플랫폼 운용에 유효한 새로운 유지보수 가이드라인을 도출하고자, 본 연구는 하이브리드자동차와 전기자동차의 특성을 모두 갖는 PHEV의 장기간 주행 데이터를 분석하여, 주요 부품의 상태 변화를 파악하였다. PHEV의 모터, 인버터, 2차전지 등 주요 부품의 주행 데이터 변화를 관찰하여 마일리지 누적에 따른 상태변화가 큰 부품을 파악하였다. 분석결과 1만Km 이상 주행 시 보조 배터리의 온도와 5만Km 이상 주행 시 2차전지의 온도 변화가 유의미하게 발생함을 확인하였다.

  • PDF

A Study On The Economic Value Of Firm's Big Data Technologies Introduction Using Real Option Approach - Based On YUYU Pharmaceuticals Case - (실물옵션 기법을 이용한 기업의 빅데이터 기술 도입의 경제적 가치 분석 - 유유제약 사례를 중심으로 -)

  • Jang, Hyuk Soo;Lee, Bong Gyou
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.15-26
    • /
    • 2014
  • This study focus on a economic value of the Big Data technologies by real options model using big data technology company's stock price to determine the price of the economic value of incremental assessed value. For estimating stochastic process of company's stock price by big data technology to extract the incremental shares, Generalized Moments Method (GMM) are used. Option value for Black-Scholes partial differential equation was derived, in which finite difference numerical methods to obtain the Big Data technology was introduced to estimate the economic value. As a result, a option value of big data technology investment is 38.5 billion under assumption which investment cost is 50 million won and time value is a about 1 million, respectively. Thus, introduction of big data technology to create a substantial effect on corporate profits, is valuable and there are an effects on the additional time value. Sensitivity analysis of lower underlying asset value appear decreased options value and the lower investment cost showed increased options value. A volatility are not sensitive on the option value due to the big data technological characteristics which are low stock volatility and introduction periods.

A Study on Public Awareness of Landslide and Check Dam Using the Big Data Platform 'Hyean' (공공 빅데이터 플랫폼 '혜안'을 통한 산사태 및 사방댐 인식 분석)

  • Sohee Park;Min Jeng Kang;Song Eu
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.687-698
    • /
    • 2022
  • Purpose: This study was conducted to understand the public awareness of landslide and check dams in 2015-2020 using the big data platform 'Hyean' and to confirm the utilization of this platform in disaster prevention areas. Method: The total amount, number of detection by period by media, and affirmative and negative trends of a search for 'landslide' and 'check dam' in 2015-2020 were analyzed using a keyword search of 'Hyean.' Result: There is significant lack of public awareness of check dam compared to landslide, and the trend is more noticeable in the conspicuous gap of data amount between the news and SNS media. The number and the timing of the search for 'landslide' coincided with the actual occurrence of landslide, while the detection of 'check dam' was less related to it. Relatively affirmative preception for the check dam is inferred, but it was difficult to confirm accurate statistical affirmative and negative trends in the disaster prevention field using 'Hyean.' Conclusion: Unlike the experts who expect positive public awareness of check dam, the statistic results show that the public awareness of the check dam as an effective countermeasure against landslide was extremely low. Active promotion of erosion control projects should be carried out first, and a balanced sample survey should accompany online and periodic field surveys. Since there is a limit to grasping the effective perception in the field of disaster prevention area using 'Hyean', it should be very cautious to establish local/governmental policies using it.

Design of a Large-scale Task Dispatching & Processing System based on Hadoop (하둡 기반 대규모 작업 배치 및 처리 기술 설계)

  • Kim, Jik-Soo;Cao, Nguyen;Kim, Seoyoung;Hwang, Soonwook
    • Journal of KIISE
    • /
    • v.43 no.6
    • /
    • pp.613-620
    • /
    • 2016
  • This paper presents a MOHA(Many-Task Computing on Hadoop) framework which aims to effectively apply the Many-Task Computing(MTC) technologies originally developed for high-performance processing of many tasks, to the existing Big Data processing platform Hadoop. We present basic concepts, motivation, preliminary results of PoC based on distributed message queue, and future research directions of MOHA. MTC applications may have relatively low I/O requirements per task. However, a very large number of tasks should be efficiently processed with potentially heavy inter-communications based on files. Therefore, MTC applications can show another pattern of data-intensive workloads compared to existing Hadoop applications, typically based on relatively large data block sizes. Through an effective convergence of MTC and Big Data technologies, we can introduce a new MOHA framework which can support the large-scale scientific applications along with the Hadoop ecosystem, which is evolving into a multi-application platform.

A Study on the Construction of RDM in an Organization Using Big Data and Block Chain (빅데이터와 블록체인을 활용한 조직내 RDM 구축방안)

  • Lee, Kyung-Hee;Choi, Youngjin;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.4 no.2
    • /
    • pp.127-139
    • /
    • 2019
  • Research Data Management (RDM) is a system that encompasses people, policies, resources and technologies that provide and support directions in producing, collecting, using, and preserving research data. RDMs consist of a wide range of activities, including supporting the creation of data management plans (DMPs), building data collections and repositories, and digital preservation and distribution. In advanced countries, systems for RDMs and related organizations are well organized and functioning, but in Korea, the management system is insufficient due to low level of data awareness. In this paper, we propose a plan to establish a research data management system suitable for the reality. In particular, it is important to reflect in RDM that the construction of big data platforms for the collection and management of big data in each field and organization is increasing rapidly. Also, we will discuss how to provide data provision and researchers' data sovereignty using blockchain technology, and propose a P2P-based decentralized RDM scheme.

  • PDF

Design of Real-Time Vehicle Information Management Platform Using an IoT-based Gateway (IoT기반 게이트웨이를 활용한 실시간 차량 정보 관리 플랫폼 설계)

  • Chang, Moon-Soo;Lee, Jeong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.548-551
    • /
    • 2018
  • Most vehicles are in the form of maintenance when a problem occurs by the user himself or herself. During maintenance, users are not able to operate the car while it is being serviced, and if the target vehicle is a revenue-generating vehicle, they will have to bear economic losses. Collecting vehicle information in real time, identifying problems that could arise with a vehicle based on the collected big data and providing advance service rather than after-sales service can help secure vehicle operation and reduce economic loss. Thus, in this thesis, a platform was designed to design IoT-based gateways, collect real-time vehicle information, and organize big data to provide vehicle information in real time.

  • PDF

KT의 M2M/IoT 서비스 플랫폼

  • Jeon, Un-Bae;Baek, Song-Hun
    • Information and Communications Magazine
    • /
    • v.30 no.8
    • /
    • pp.40-45
    • /
    • 2013
  • 본 고에서는 KT의 M2M/IoT 서비스 플랫폼과 주요 기술을 소개한다. 또한 M2M/IoT 관련 비즈니스의 예상되는 구조를 통신사업자 및 플랫폼 사업자의 관점에서 기술하며, 이러한 비즈니스 구조에 적합한 기술과 플랫폼을 이용한 문제 해결 방안을 제시한다. M2M/IoT 서비스 분야에서 당면한 과제를 해결하기 위한 주요 개념을 확장가능성, 유연성, 클라우드 환경, 빅데이터 등으로 분류하고 이를 위한 주요 해결방안들을 제시한다.

Development of multiple medical information mediation Platform based on FHIR (FHIR 기반 다중 의료 정보 중재 플랫폼 개발)

  • Lee, Chung-sub;Lim, Dong-Wook;Noh, Si-Hyeong;Kim, Tae-Hoon;Jeong, Chang-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.318-321
    • /
    • 2022
  • 최근 의료데이터 표준화에 대한 중요성이 보건의료 빅데이터 구축과 맞물려 보건의료데이터 표준화와 마이데이터 생태계 조성을 추진하고 있다. 그리고 개인들의 휴대용 기기 이용증가와 모바일 환경으로 전반적인 디지털헬스의 패러다임 변화에 따라 HL7 FHIR의 사용이 점차 확대될 것으로 예측된다. 본 논문에서는 의료정보 표준인 HL7 FHIR와 의료영상 표준인 DICOM으로 환자 정보를 전달하기 위한 다중 의료 정보 중재 플랫폼에 대해서 기술한다. 이를 구현하기 위해 HL7 FHIR의 Patient, Observation, DiagnosticReport, Bundle 리소스를 활용하여 환자 정보와 임상 리포트 정보를 전달하여 StudyList에서 보여줄 수 있도록 구현하였다. 현재 구현된 내용은 FHIR 기반의 임상데이터로 의료영상을 포함한 표준화된 정보로 제공하여 마이데이터 실증 플랫폼으로 활용될 것으로 기대된다.

A Study on Modified PBFT Study for Effective Convergence of IoT Big Data and Blockchain Technology (IoT 빅데이터와 블록체인 기술의 효과적 융합을 위한 수정된 PBFT연구)

  • Baek, Yeong-Tae;Min, Youn-A
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.193-194
    • /
    • 2020
  • 블록체인의 활용이 다양해지며 블록체인을 통한 산업, 정부의 기술적용이 확산되고 있다. 특히 사물인터넷 등 빅데이터 관리를 위한 방법으로 블록체인과의 융합도 적지 않게 거론되고 있다. 사물인터넷과 같은 빅데이터를 효과적으로 관리하기 위해서는 수집 및 저장과정과 더불어 투명하고 정확한 신뢰기반의 데이터 관리가 필요하다. 현재 블록체인의 프라이빗 블록체인 플랫폼에서 가장 많이 제시되고 활용되는 합의알고리즘은 PBFT이다. PBFT의 경우 노드 증가에 따른 연산알고리즘의 과중으로 인한 속도저하가 문제가 될 수 있다. 본 논문에서는 PBFT의 합의과정에 대한 알고리즘을 수정하여 노드 증가 시에도 복잡도를 낮출 수 있는 방법을 제안하였다. 본 논문에서는 시뮬레이션을 통하여 노드 개수를 변형하며 기존 PBFT알고리즘 대비 제안 알고리즘의 우수성을 증명한다.

  • PDF

A Design and Development of Big Data Indexing and Search System using Lucene (루씬을 이용한 빅데이터 인덱싱 및 검색시스템의 설계 및 구현)

  • Kim, DongMin;Choi, JinWoo;Woo, ChongWoo
    • Journal of Internet Computing and Services
    • /
    • v.15 no.6
    • /
    • pp.107-115
    • /
    • 2014
  • Recently, increased use of the internet resulted in generation of large and diverse types of data due to increased use of social media, expansion of a convergence of among industries, use of the various smart device. We are facing difficulties to manage and analyze the data using previous data processing techniques since the volume of the data is huge, form of the data varies and evolves rapidly. In other words, we need to study a new approach to solve such problems. Many approaches are being studied on this issue, and we are describing an effective design and development to build indexing engine of big data platform. Our goal is to build a system that could effectively manage for huge data set which exceeds previous data processing range, and that could reduce data analysis time. We used large SNMP log data for an experiment, and tried to reduce data analysis time through the fast indexing and searching approach. Also, we expect our approach could help analyzing the user data through visualization of the analyzed data expression.