• Title/Summary/Keyword: 비 유막두께

Search Result 15, Processing Time 0.026 seconds

Hamrock & Dowson의 타원접촉 EHL 유막두께식에 대한 고찰

  • 박태조
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1995.06a
    • /
    • pp.31-36
    • /
    • 1995
  • 본 논문에서는 유한차분법과 뉴우튼-랍슨 방법을 사용하여 타원접촉 EHL 문제를 수치해석하고 그 결과를 H-D의 해석결과 및 그들의 유막두께식과 비교하였다. 최소유막의 크리 뿐만 아니라 중앙부의 유막두께도 H-D이ㅡ 결과와 차이를 보이며, 특히, 하중변화에 대한 중앙부 유막두께는 상당히 크게 차이를 나타내고 있다. 따라서 본 논문에서 구한 정확한 수치해석결과를 사용하면 H-D나 Chittenden 등의 유막두께식에 비하여 EHL 상태에서의 유막두께를 보다 정확하게 예측할 수 있는 새로운 유막두께식을 제시할 수 있을 것으로 생각되며 이를 위해서 추가적인 연구가 요구된다.

  • PDF

Study on the Film Thickness and Pressure of the Transient Line Contact Elastohydrodynamic Lubrication (비정상 상태의 선접촉 탄성유체윤활 유막두께 및 유막압력 특성연구)

  • Cho, Jae-Cheol;Jang, Si-Youl
    • Tribology and Lubricants
    • /
    • v.25 no.5
    • /
    • pp.335-341
    • /
    • 2009
  • Elastohydrodynamic lubrication (EHL) analysis shows that film thickness is very flat in the contact area and pressure distribution is somehow similar to that of Hertzian contact pressure except the outlet region with pressure spike. These typical patterns of EHL film thickness and pressure are the cases under the steady contact conditions of applied loads and speeds. However, many engineering contacts are rather under the conditions of varying loads and contact speeds, and therefore the predictions for endurance life and performance of machine elements with steady EHL analysis are not suitable in many occasions. This study shows the differences in film thickness formation and pressure distribution between steady and transient contact conditions in several contact cases.

A Study on Dynamic Behavior of Connection Elements with Clearance Including Lubricating Effect (윤활효과를 고려한 간극이 있는 평면운동 기구의 동적거동에 관한 연구)

  • Yun, J. B.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.6 no.3
    • /
    • pp.289-299
    • /
    • 1982
  • 동적운동 기구의 연결부분에 간극이 존재함으로 인해 발생하는 충격현상을 평면운동기구를 모델 로 하여 운동 역학적으로 해석하였다. 비정상 상태의 Reynolds 방정식을 적용하여 과도상태 및 정상 상태에 있어서 동하중과 유막 두께와의 관계를 압착 유막효과(squeeze film effect)에 중점을 두어 조사하였으며 탄성 변형을 고려하여 유도한 유막두께식과 Reynolds 방정식의 수치적분으로 는 무차원식으로 변형하여 Grubin의 간략해법을 이용하였다.

Optimization of Specific Film Thickness for a Disc Cam Using Genetic Algorithm (유전자 알고리즘을 이용한 원판 캠의 비 유막두께 최적화)

  • Kwon, Soon-Man;Kim, Chang-Hyun;Nam, Hyoung-Chul;Shin, Joong-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.924-929
    • /
    • 2008
  • The rate of wear of cam followers in a valve train system is mainly a function of contact stress between the cam and the follower, sliding velocity and hydrodynamic film thickness between the two mating surfaces. The wear or surface fatigue can be reduced by maximizing the elastohydrodynamic film thickness. In this paper, an attempt has been made to estimate the optimal specific film thickness of cam-follower system quantitatively. A general TES polynomial function with real values of exponents is developed and genetic algorithm (GA) is used as optimization techniques for maximizing the minimum specific film thickness. The optimization programs enumerate values of the exponents for synthesis of cam displacement curves. The results show that the minimum film thickness can be increased considerably, e.g. approximately 7% in this paper.

An Experimental Study on the Recovery of Diesel Oil Using a Drum Type Skimmer (드럼식 유회수기의 디젤유 회수에 관한 실험적 연구)

  • Song Dong-Eub;Jung Song-Whoan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.52-66
    • /
    • 2003
  • Generally we have difficulty in removing oil using mechanical devices because recovery rate and recovery efficiency decrease remarkably when operating in thin oil films or in oils of very high viscosity In the Present study a series of experiments were carried out to study the effect of operating conditions on the rate of recovery for the spilled oil using a drum type skimmer. For each set of experiments depth of immersion, oil film thickness and the circumferential speeds were varied systematically to find the effects on the recovery rate. The results shows that recovery rate is dependent on the contact angle for the depth of immersion and the highest rate of oil recovery shows in the case of a contact angle of 45°(h/d=0.15). For the removal of spilled oil the optimal circumferential speed can be found as the critical value to reach the saturated recovery rate for a given oil film thickness and depth of immersion. Even in thin oil thickness we have enough recovery rate and recovery efficiency within critical circumferential speed this way.

  • PDF

On the Oil Film Behaviors of Engine Bearing Considering Crankshaft Misalignment (크랭크축 경사도를 고려한 엔진 베어링의 유막거동에 관한 연구)

  • Kim, Han-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3119-3124
    • /
    • 2010
  • The purpose of this paper is to analyze dynamic behaviors of the oil film thickness and engine bearings in both aligned and misaligned operation conditions of a crankshaft using computer simulation techniques. A crankshaft as an elastic body is modeled for a misaligned crankshaft which is very important design parameter of the film thickness and engine bearings. In this analysis, a dynamic characteristic of a minimum oil film is analyzed based on the elastohydrodynamic lubrication theory. The boundary conditions for analyzing the film behaviors include non-linear constraint forces and bending moments in engine bearings. The more expedient model of an engine bearing is extended to consider the effect of crankshaft misalignment. The computed results indicate that the minimum oil film thickness that causes a major influence on the performance of engine bearings has showed a decrease of 16% to 24% for the misaligned crankshaft compared with an aligned crankshaft. The computed results show that the misalignment of a crankshaft inevitably brings the reduction of minimum oil film thickness and this may increase the failure of a bearing. These results as design parameters are very useful for a bearing designer as a firm reference data of an automotive engine.

Analysis of Connecting Rod Bearings Using Mass-Conserving Boundary Condition (유량 보존 경계 조건을 적용한 커넥팅 로드 베어링의 성능 해석)

  • 김병직;김경웅
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.04b
    • /
    • pp.75-79
    • /
    • 1996
  • 유량 보존 경계 조건을 적용하여 커넥팅 로드 베어링의 성능 해석을 수행하였다. 레이놀즈 경계 조건을 적용하는 경우에 비하여 최소 유막 두께, 동력 손실율과 축방향 유량은 더 작게, 최대 유막 압력은 더 크게 예측되었다. 유량 보존 경계 조건을 적용한 경우 축 방향으로의 공급 유량과 방출 유량이 거의 균형을 이루었다. 물리적으로 타당한 유량 보존 경계 조건을 적용한 커넥팅 로드 베어링의 성능 해석으로 얻어진 동력 손실율과 축 방향 유량을 이용하면, 윤활제의 온도 상승과 그에 따른 점도 변화를 좀 더 정확하게 예측 할 수 있을 것으로 기대된다.

  • PDF

Pressure Analysis of Sterntube after Bush Bearing Considering Elastic Deflection of Misaligned Journal and Partial Slope of Bearing Bush (탄성 변형된 저어널의 편심과 베어링 부시의 부분경사를 고려한 선미관 후부 베어링의 압력분포 해석)

  • Choung, Joon-Mo;Choe, Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.666-674
    • /
    • 2007
  • It is very important to estimate static squeezing pressure distributions for lining material of sterntube after bearing at dry dock stage since the maximum squeezing pressure value can be one of the significant characteristics representing coming navigation performances of the propulsion system. Moderate oil film pressure between lining material and propulsion shaft is also essential for safe ship service. In this paper, Hertz contact theory is explained to derive static squeezing pressure. Reynolds equation simplified from Navier-Stokes equation is centrally differentiated to numerically obtain dynamic oil film pressures. New shaft alignment technology of nonlinear elastic multi-support bearing elements is also used in order to obtain external forces acting on lining material of bearing. For 300K DWT class VLCC with synthetic bush of sterntube after bearing, static squeezing pressures are calculated using derived external forces and Hertz contact theory. Optimum partial slope of the after bush is presented by parametric shaft alignment analyses. Dynamic oil film pressures are comparatively evaluated for partially bored and unbored after bush. Finally it is proved that the partial slope can drastically reduce oil film pressure during engine running.

Study of the Friction Force Measurements According to the Rolling-Sliding Ratios under the Condition of Elastohydrodynamic Lubrication (구름-미끄럼 속도비에 따른 탄성유체윤활영역에서 유막두께와 마찰력 측정연구)

  • 장시열
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.225-230
    • /
    • 2004
  • Most studies of elsatohydrodynamic lubrication are oriented only to the measurement of film thickness itself with optical interferometer. In order to exactly investigate the tribological characteristics of a certain lubricant, it is also important to get the information of traction behaviors as well. In this work, we developed a device for measuring the friction force of ehl contact condition as well as the film thickness. To verify the validity of the measuring system, the friction forces and film thicknesses under ehl condition are simultaneously measured with the variations of additive ratios of viscosity index improvers which cause non-linear tendencies of film thickness to contact velocity.

Experimental Investigation to Establish Correlation Between Specific Film Thickness and Vibration Signals in Spur Gear System (스퍼 기어의 진동 신호와 비 유막 두께(Specific Film Thickness)의 상관관계에 관한 실험적 연구)

  • Kim, Jong Sik;Amarnath, M.;Lee, Sang Kwon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.9
    • /
    • pp.1005-1012
    • /
    • 2014
  • Gears are critical elements in automobiles, and their use as power transmitting machine elements in engineering applications is quite extensive. In the areas of contact between gear teeth, the condition of a gear is likely to deteriorate due to contact fatigue, wear, material defects, lubrication failure, etc. Thus, it is necessary to monitor its condition to ensure smooth power transmission. Gear teeth deterioration causes failures such as abrasive wear, scuffing, pitting, and spalling. These failures lead to a higher level of vibration signals in the gear system. This paper presents the results of an experiment on the surface fatigue wear of a spur gear system. The correlation between the estimated specific film thickness, statistical parameter of the vibration signals, and Stribeck curve was considered in this study.