• Title/Summary/Keyword: 비행성

Search Result 1,357, Processing Time 0.029 seconds

The Development of Performance Analysis Code for Pre-Conceptual Design of VTOL UAV (수직이착륙/고속순항 무인기 초기개념설계를 위한 성능예측 프로그램 개발)

  • Jung, Won-Hyung;Lee, Kyung-Tae;Kim, Jung-Yub
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.1-9
    • /
    • 2004
  • The performance analysis code has been developed for vertical take-off and landing(VTOL) UAV which can be utilized as a trade analysis tool in the pre-conceptual design phase. The UAV requires VTOL capability and high speed cruise performance. The main logic of this performance analysis code is to estimate performance parameters of each mission segment by mission fuel weight iteration. The reliability of this performance analysis code is discussed by comparing the data of existing dual flight mode VTOL UAVs such as Boeing CRW and Bell Tilt Rotor.

A Study on Flight Simulation Based on HLA-RTI (HLA-RTI에 기반 한 비행시뮬레이션에 관한 연구)

  • Hyun, Se-Woong;Yoon, Sug-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.602-608
    • /
    • 2009
  • The HLA system architecture, prescribed in IEEE-1516, is a core fundamental technology to build a complex simulation network system which is composed of a number of individual simulation developed for different purposes. The model structure of flight simulation with expansibility and compatability was suggested in this thesis by showing how to implement HLA to a commercial flight simulation software and how the system implemented with HLA to work. In addition, it was judged whether real-time can be guaranteed implementing to a simulation system with integrity through analysis of flight information data collected by comparing real-time simulation based on HLA with commercial flight simulation.

Development and Estimation of Low Price-Small-Autopilot UAS for Geo-spatial Information Aquisition (지형정보획득용 저가 소형 자동항법 UAS개발 및 평가)

  • Han, Seung Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1343-1351
    • /
    • 2014
  • Recent technological advances in wireless networks and microelectromechanical systems (MEMS) have led to the development of different types of mini-UAVs and their utilizations in various ways. This study endeavors to develop a low-cost mini-UAV with autonomous flight capability, in order to obtain geospatial information of a small or medium-sized area, and also assess its flight stability by comparing the predetermined flight paths against the actual flight paths. Based on a post-development flight test, stable flight has been proven achievable as follows: the maximum endurance speed is 1 hour, the flying distance is 50km, the horizontal accuracy of flight paths is about ${\pm}6{\sim}8m$, and the altitude accuracy is about ${\pm}8m$. Therefore, it is deemed that high-resolution images which can be utilized for geospatial information are obtainable. This indicates that a UAV flying at an altitude of 200m can acquire images across a $2km{\times}3km$ area on the ground within 25 minutes, which validates its high usability for obtaining high-solution images at low altitudes in the future.

Development of Switching System for Flight Control Law (비행제어법칙 전환시스템 개발)

  • Ahn, Jong-Min;Im, Sang-Soo;Kwon, Jong-Kwang;Choi, Sup;Lee, Yong-Pyo;Ko, Joon-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.712-718
    • /
    • 2008
  • This paper deals with a development of flight control law switching system which can be used for flight test of the research control law by switching control law during flight. Through this research program, fader logic and integrator stabilization design has been introduced to minimize the transient response of aircraft caused by flight control law switching and to prevent the divergence of the integrator included in the control law in standby mode. MIL-STD-1553B communication was applied to transfer the data between the two control laws. This paper introduce the control law switching system architecture and major design concept and include the system verification and validation result performed on the flying quality simulator of the advanced trainer.

Design and Implementation of Air Vehicle Test Equipment for Unmanned Aerial Vehicle (무인항공기 점검을 위한 비행체점검장비 설계 및 구현)

  • Kwon, Sang-eun
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.4
    • /
    • pp.251-260
    • /
    • 2020
  • Unlike manned aerial vehicles, because an unmanned aerial vehicle (UAV) has a limitation which allows only remote test during flights, it is very important to maintain the high reliability of the vehicle through pre- and post-flight tests. To this end, this paper designed an air vehicle test equipment (AVTE) for UAV which meets the derived hardware and software requirements. Based on this design, the AVTE was implemented in accordance with the actual test scenario. The implemented AVTE has the advantage of reducing the time and cost required for the test of UAV by allowing the operator to perform automatic or manual tests for necessary parts in various situations such as before and after starting engine and pre- and post-flight tests. Furthermore, this study is expected to help with the design and implementation of AVTE for other UAVs.

A Optimization Study of UAV Path Planning Generation based-on Rapid-exploring Random Tree Method (급속탐색랜덤트리기법 기반의 무인 비행체 경로계획생성 최적화 연구)

  • Jae-Hwan Bong;Seong-Kyun Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.981-988
    • /
    • 2023
  • As the usage of unmanned aerial vehicles expands, the development and the demand of related technologies are increasing. As the frequency of operation increases and the convenience of operation is emphasized, the importance of related autonomous flight technology is also highlighted. Establishing a path plan to reach the destination in autonomous flight of an unmanned aerial vehicle is important in guidance and control, and a technology for automatically generating path plan is required in order to maximize the effect of unmanned aerial vehicle. In this study, the optimization research of path planning using rapid-exploring random tree method was performed for increasing the effectiveness of autonomous operation. The path planning optimization method considering the characteristics of the unmanned aerial vehicle is proposed. In order to achieve indexes such as optimal distance, shortest time, and passage of mission points, the path planning was optimized in consideration of the mission goals and dynamic characteristics of the unmanned aerial vehicle. The proposed methods confirmed their applicability to the generation of path planning for unmanned aerial vehicles through performance verification for obstacle situations.

Design and Implementation of Integrated Verification Facility for Satellite Flight Software (위성비행소프트웨어 통합검증환경의 설계 및 구축)

  • Shin, Hyun-Kyu;Lee, Jae-Seung;Choi, Jong-Wook;Cheon, Yee-Jin
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.49-56
    • /
    • 2012
  • The flight software monitors the status of the satellite and performs attitude control and its own mission. Due to the operating environments and its uniqueness, the high level of reliability is required for the flight software. To this end, a variety of activities to meet the given requirements and improve the safety and reliability are made during the development of flight software. A variety of development environments should be provided to support execution of flight software on hardware or satellite simulator and dynamic verification of flight software through command/telemetry interface. The satellite flight software team has been developing the IVF to be applied to various satellite projects more effectively and to improve the reliability of flight software. In this paper, the design and configuration method of IVF for the effective verification of flight software is introduced.

Vision-Based Trajectory Tracking Control System for a Quadrotor-Type UAV in Indoor Environment (실내 환경에서의 쿼드로터형 무인 비행체를 위한 비전 기반의 궤적 추종 제어 시스템)

  • Shi, Hyoseok;Park, Hyun;Kim, Heon-Hui;Park, Kwang-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.47-59
    • /
    • 2014
  • This paper deals with a vision-based trajectory tracking control system for a quadrotor-type UAV for entertainment purpose in indoor environment. In contrast to outdoor flights that emphasize the autonomy to complete special missions such as aerial photographs and reconnaissance, indoor flights for entertainment require trajectory following and hovering skills especially in precision and stability of performance. This paper proposes a trajectory tracking control system consisting of a motion generation module, a pose estimation module, and a trajectory tracking module. The motion generation module generates a sequence of motions that are specified by 3-D locations at each sampling time. In the pose estimation module, 3-D position and orientation information of a quadrotor is estimated by recognizing a circular ring pattern installed on the vehicle. The trajectory tracking module controls the 3-D position of a quadrotor in real time using the information from the motion generation module and pose estimation module. The proposed system is tested through several experiments in view of one-point, multi-points, and trajectory tracking control.

Analysis and Flight Test of XKO-1 Store Separation (저속통제기 외부장착물 분리해석 및 비행시험)

  • Lee, Seung-Soo;Kim, Sang-Jin;Kim, Myung-Seong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.5
    • /
    • pp.24-29
    • /
    • 2004
  • In this paper, we summarize the results of free drop wind tunnel test, separation analysis and flight test in order to verify the safety during the separations of an external fuel tank and the LAU-131 rocket launcher from XKO-l. The wind tunnel test was conducted to show the safety in free drop of the stores and to gather the trajectory data for fine tune of MSAP(Multi-body Separation Analysis Program). The enhanced MSAP was then used to predict the trajectories of the stores with and without the ejector forces. A correlation of MSAP results for free drop case was also made to show the safety of jettison with the free drop type bomb rack. Moreover, the flight test was conducted. and its results were compared to analysis results. Finally, the safe jettison boundary was determined from the flight test.

Stability Analysis on Guided Munition at Slow Spin (유도포탄 저속 회전 시 안정성 분석)

  • Kim, Youngjoo;Bang, Hyochoong;Seo, Songwon;Pak, Chang-Ho;Kim, Jin-Won;Seo, Ilwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.752-759
    • /
    • 2018
  • This paper presents methods and results of nonlinear simulations for a guided munition for verifying stability at slow spin. The munition is launched by an artillery and it deploys the rear fins to reduce its spin. While the spin speed command is set to 1 rps and 3 rps, wind gusts of 3m/s, 7m/s, 10m/s, and 15m/s in amplitude, and 26 different directions were generated as disturbance for each simulation run. Whereas the munition with the spin speed of 3 rps didn't flip, that with 1-rps spin flipped under some gusts. However, the gusts which increase airspeed in the flight direction didn't introduce harmful effect. Most importantly, all the flips of the munition was observed near the end of the simulation where the munition is going down. No problem was observed near the summit of trajectory.