• Title/Summary/Keyword: 비파괴기법

Search Result 550, Processing Time 0.023 seconds

A Study on the Characteristic and Manufacture Technique for the Gold wire of Phoenix-Shaped Glass Ewer by National Treasure No. 193 (국보 제193호 봉수형유리병 금사의 특성과 제작기법 연구)

  • Hwang, Hyun Sung;Yun, Eun Young
    • Journal of Conservation Science
    • /
    • v.31 no.1
    • /
    • pp.21-27
    • /
    • 2015
  • The Phoenix-shaped Glass Ewer, which is No. 193 National Treasure, was seriously damaged by a unique form of green glass pieces when excavated among a number of burial accessories of Hwangnamdaechong known to have been formed in the 5th century. While it has long been exhibited at the National Museum of Korea since its treatment for conservation treatment at conservation science laboratory in 1984, the existing adhesive materials seriously deteriorated for the 30 years, and the condition was quite unstable. The epoxy resin used as a restorative materials turned yellowing due to the light and heat so much that it was no longer able to exhibit it in a stable and effective manner. As a result, a re-treatment for conservation was conducted lately. This study focuses on the three pieces of Gold wires used to carefully wrap up the handle of the Phoenix-shaped Glass Ewer broken into three pieces, which has not been studied so far. As for the analysis method for Gold wires, SEM-EDS and Stereo Microscope were used for nondestructive analysis. First of all, the result of the SEM-EDS analysis shows that the composition was Au 91.9 wt.%-Au 92.8 w.t% and Ag 5.9 wt.%-Ag 6.5 wt.%, which indicates that it was an alloy made of Au and Ag. The production technique of Gold wires was also observed by means of optical microscopes. In general, Gold wires were manufactured by a drawing process in which a lump of gold was beaten or pulled out of a hole or by a process of twisting a gold plate. However, Gold wires separated from the handle of the Phoenix-shaped Glass Ewer did not involve any trace of twisting on the surface. Rather, fine vertical stripes were observed with the sections filled up. Hence, it is thought that this Ewer went through a drawing process and then was mended. As a result, no certain relation with the golden mending material used for the Phoenix-shaped Glass Ewer was verified. The findings above indicate that most of the existing researches on Gold wires recognized them, not as separate remains, but merely as a component of other golden remains. Thus, there has been little systematic study on the manufacturing techniques of Gold wires. The future study on Gold wires may verify the correlation between the Gold wires used to fix the handle of the Phoenix-shaped Glass Ewer, which is examined in this study, with that of golden remains in the Silla era.

Study on Manufacturing Techniques and Conservation for Earthenware Horn Cups with a Horse Head Decoration(Treasure) (보물 도기 말머리장식 뿔잔의 제작 기법 연구와 보존처리)

  • KWON, Ohyoung;HAM, Chulhee;YU, Jia;KIM, Hanseul;PARK, Changyuel
    • Korean Journal of Heritage: History & Science
    • /
    • v.55 no.1
    • /
    • pp.51-61
    • /
    • 2022
  • Earthenware horn cups with horse head decorations were excavated from Tomb No. 7 of Bokcheon-dong, Dongraegu, Busan Metropolitan City. Made of earth in the shape of a horn, these cups are considered to have been used to drink alcohol or beverage. Large numbers of earthenware horn cups of various shapes were excavated from tombs located in the old territories of Silla and Gaya. A pair of earthenware horn cups were excavated from Tomb No. 7, and the two cups are almost identical in overall shapes and manufacturing techniques despite different sizes. Conservation treatment was carried out for the bigger one of the two horn cups this time. There are two cracks toward the horse head decorations around the mouth with missing parts observed. The chest of the horse touches the ground with one side decorating the horse head and the other side facing the conical mouth of the horn cup. It is in the U shape, striking a balance based on two legs attached behind. The surface of the horn cup was made with a potter's wheel, and the connection to the horse head has traces of cutting and trimming. The horse head is expressed realistically with its features including the ears, eyes, nose, and mouth well apprehended and its color is grey This study intended to investigate manufacturing techniques of the artifact by examining its internal structure through the condition survey in a non-destructive way. CT imaging was used to figure out its manufacturing techniques and to diagnose its condition, and accordingly the scientific conservation treatment was conducted to stabilize the artifact. The precise diagnosis on conservation condition found that there are two chips in the spout with their cracks extended. One of the chips is connected with separation added to the crack. The material which has been used for connection in the past was collected for the infrared spectroscopic analysis, which was identified to be nitrocellulose resin for the connection. Therefore, this conservation treatment focused on removing the old material and preventing the spread of cracks. Before conservation treatment, the condition survey and scientific examination for the artifact were carried out to secure data about the earthenware horn cup with horse head decorations(Treasure). Based on them, effective plans for its conservation treatment was sought for and then existing adhesive was safely removed, and restoration material was selected to take into account its reversibility. In addition, the conservation treatment according to optimal methodologies was conducted through the consultation meeting with experts.

Study on Characteristics of Controlled Low Strength Material Using Time Domain Reflectometry (시간영역반사법을 이용한 유동성 채움재의 특성 연구)

  • Han, Woojin;Lee, Jong-Sub;Byun, Yong-Hoon;Cho, Samdeok;Kim, Juhyong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.33-37
    • /
    • 2016
  • The hydration process of Controlled Low Strength Material (CLSM) used for backfill is the primary factor to determine the construction period. The objective of this study is to monitor the hydration process of CLSM using the Time Domain Reflectometry (TDR) and to establish the relationship between dielectric constant and compressive strength. The CLSM specimen is composed of cement, flyash, silt, sand, accelerator, and water. The material characteristics of the CLSM including flow, unit weight, compressive strength are investigated. To measure the dielectric constant of the CLSM during the curing time, TDR probe incorporated with a mold and a reflectometer are used. Experimental results show that the dielectric constant remains constant at early stage, and then decreases as the curing time increases. In addition, the dielectric constant is related to the compressive strength in inverse power function. This paper suggests that the TDR technique may be used as a non-destructive testing method in order to estimate the compressive strength of the CLSM mixture under construction.

The Effect of Curing Temperature on the Relationship between Shear Wave Velocity and Concrete Compressive Strength Using the Same Cement Paste (동일 시멘트 페이스트 사용시 양생온도가 전단파 속도와 압축강도 상관관계에 미치는 영향)

  • An, Ji-Hwan;Jeon, Sung-Il;Kwon, Soo-Ahn;Nam, Jeong-Hee
    • International Journal of Highway Engineering
    • /
    • v.11 no.2
    • /
    • pp.67-74
    • /
    • 2009
  • The strength of concrete is one of the most important parameters in evaluating the properties of concrete. Compressive strength of concrete has been widely used because of its convenience of experiments and generality. Compressive strength of concrete varies according to materials and curing conditions. Even with the same materials, the strength varies according to the curing conditions. Therefore, if we want to know the strength of concrete from the construction field, we have to put it in exactly the same curing condition with the construction field. But it is impossible to make the exactly same curing conditions in the laboratory. Also damages occur in order to measure the strength of concrete, because the core hat to be made into the pavement. To overcome these limits, many studies of nondestructive method have already been researched. It was already proven that shear wave velocity was very closely related to the compressive strength. In this study, three different curing temperatures with the same mixture paste were used, and compressive strength and shear wave velocity, according to the aging were measured. The relationship between these two parameters was examined. As results, curing temperature affected the compressive strength and the shear wave velocity, but did not affect the relation between them.

  • PDF

Geotomography Applied for the Integrity Test of Cast-in-place Piles (현장타설콘크리트말뚝의 건전도 평가를 위한 geotomography의 적용 연구)

  • Lee Jae-Kyung;Park Jong-Nam
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.4
    • /
    • pp.5-12
    • /
    • 2005
  • Recently, geophysical prospecting methods have played very important roles in civil and environmental engineering problems. Technical advances in geophysical instruments and computer system made it possible to get underground images with very high resolution far purposes to resolve those problems. It was possible partly due to ever increasing demand for development of technologies needed to precisely detect polluted areas and prevent ground-related accidents. Based on the same demand, integrity tests of cast-in place piles draw more attention and development of accurate test procedures is required. Ultrasonic methods is one of most advanced non-destructive procedures. In the paper, a geotomography method is employed for the cast-in place pile integrity test using ultrasonic waves. The image of pile interior is scanned and scrutinized far better and more accurate decision in the cast-in place pile integrity. In this study, we firstly examined the accuracy fur tomography program with idealized synthetic models built in water tank: their position and size were changed in the tank and each case was studied. In the next stage, real concrete pile models were fabricated and images of anomaly areas inside the pile were scanned to successfully locate those areas.

Detection of Subsurface Ancient Remains in Sooseong Dang Area, Buan Using Ground Penetration Radar Technique (지하투과레이다 기법을 이용한 부안 수성당 지역의 지하 유적 탐사)

  • Lee, Hyoun-Jae;Jeon, Hang-Tak;Yun, Sul-Min;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.553-563
    • /
    • 2019
  • In order to survey archaeological sites, drilling and excavation are carried out at the final stage. However, at the preliminary stage, non-excavation geophysical prospection is used for assessing underground archaeological ruins. Among the geophysical prospecting techniques, Ground Penetration Radar (GPR) prospection has effectively been applied to historical sites due to its high resolution at shallow depths. In this study, the GPR prospection was conducted to find underground ruins near Suseong-Dang, the place of ancient rituals in Buan area, Korea. First, the GPR prospection was conducted at three sites (Site-1, 2, and 3), and subsequently, the GPR prospection was carried out at Site-3 in more detail. As a result of the prospection, the underground layered structure of the survey area consists of three layers, which are soil layer, weathered rock, and sound rock from the surface. And the GPR anomaly to the archaeological structure was clearly identified at around 100-cm depth showing est-west direction that is parallel to the long-axis array. This GPR anomaly of irregular geomorphological features and intermittent distribution may be related to the ritual remains found in Suseong Dang. The GPR prospection could be effectively used to detect archaeological sites or remains buried in the ground.

Material Characteristics, Deterioration Evaluation and Crack Depth Estimation for Mulgyeseowon Stele in Changnyeong, Korea (창녕 물계서원 원정비의 재질특성 및 손상도 평가와 균열심도 측정)

  • Yoo, Ji Hyun;Lee, Chan Hee;Chun, Yu Gun
    • Journal of Conservation Science
    • /
    • v.30 no.4
    • /
    • pp.427-438
    • /
    • 2014
  • To measure the depth and extension on the surface cracks of the stone monument, ultrasonic pulse velocity targeted at the Mulgyeseowon Stele in Changnyeong was used in this research. Additionally, to establish a long-term countermeasure of management and conservation for this stele, we have investigated the material properties and damage on it and have conducted a precise diagnosis by a variety of non-destructive techniques. Our research has revealed that stones of the stele are composed mainly of three rock types according to the parts of it, alkali-feldspar granite, gabbro and diorite. The result of the deterioration evaluation has occurred that cracks, which are observed from every direction in the body of the stele, are the significant factors to reduce structural stability. The ultrasonic velocity for an evaluation on the properties of the stele has revealed that the speed was high in the order of body, pedestal and crown. Furthermore, to understand the present condition and occurrences of the cracks which have measured in many different forms on the stele quantitatively, we have estimated from 0.6 to 24.1cm deep of the cracks by To-Tc method using ultrasonic velocity.

Particle Spacing Analysis of Frozen Sand Specimens with Various Fine Contents by Micro X-ray Computed Tomography Scanning (Micro X-ray CT 촬영을 통한 동결 사질토 시료의 세립분 함유량에 따른 입자간 거리 분석)

  • Chae, Deokho;Lee, Jangguen;Kim, Kwang-Yeom;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.1
    • /
    • pp.31-35
    • /
    • 2017
  • The mechanical characteristics of frozen sand greatly depend on the frozen temperature and the fine contents according to the previous study by Chae et al. (2015). There are two hypotheses to explain this experimental results; one is the unfrozen water contents greatly affected by the fine contents and frozen temperature and the other is the sand particle spacing greatly affected by the pore-ice. To evaluate the latter hypothesis, the micro X-ray CT scan was performed. The micro X-ray CT scanning, one of the actively performed interdisciplinary research area, has a high resolution with micrometer unit allows to investigate internal structure of soils. In this study, X-ray CT technique was applied to investigate the effect of the frozen temperature and fine contents on the sand particle minimum and average spacing with the developed image processing techniques. Based on the spacing analysis, the frozen temperature and fine contents have little influence on the sand particle spacing in the frozen sand specimens.

Evaluation of Flexible Pavement Layer Moduli Using the Depth Deflectometer and Flexible Pavement Behavior under Various Vehicle Speeds (아스팔트 콘크리트 포장구조체의 내부처짐에 의한 물성추정과 주행속도에 따른 거동분석)

  • Choi, Jun-Seong;Kin, Soo-Il;Yoo, Ji-hyung
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.135-145
    • /
    • 2000
  • A new procedure needs to be developed to predict the dynamic layer properties under moving truck loads. In this study, a computer code to evaluate layer moduli of asphalt concrete pavement from measured interior deflections at various depths were developed and verified from numerical model tests. Interior deflections of the pavement are measured from Multi-Depth Deflectometer(MDD). It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.32% for several numerical models tested. When impact loads were used, a technique to determine the depth to virtual rigid base was proposed through the analysis of compressive wave velocity and impulse loading durations. It was found that errors between the given and backcalculated moduli in numerical analysis were less than 0.114% when virtual rigid base was considered in numerical analysis. The pavement behavior must be evaluated under various vehicle speeds when determining the dynamic interaction between the loading vehicle and pavement system. To evaluate the dynamic behavior on asphalt concrete pavement under various vehicle speeds, truck moving tests were carried out. From the test results with respect to vehicle speed, it was found that the vehicle speed had significant effect on actual response of the pavement system. The lower vehicle speed generates the higher interior deflections, and the lower dynamic modulus.

  • PDF

Effects of Antenna Modeling in 2-D FDTD Simulation of an Ultra-Wide Band Radar for Nondestructive Testing of a Concrete Wall (콘크리트 벽의 비파괴검사를 위한 초광대역 레이더의 2차원 FDTD 시뮬레이션에서 안테나 모델링의 영향)

  • Joo, Jeong-Myeong;Hong, Jin-Young;Shin, Sang-Jin;Kim, Dong-Hyeon;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.98-105
    • /
    • 2013
  • This paper presents a finite-difference time-domain(FDTD) simulation and a data processing technique for radar sensing of the internal structure of a wall using an ultra-wide band antenna. We first designed an ultra-wide band anti-podal vivaldi antenna with a frequency range of 0.3~7 GHz which is chosen to be relatively low after considering the characteristics of wave attenuation, wall penetration, and range resolution. In this study the two-dimensional FDTD technique was used to simulate a wall-penetration-radar experiment under practical conditions. The next, the measured radiation pattern of the practical antenna is considered as an equivalent source in the FDTD simulation, and the reflection data of a concrete wall and targets are obtained by using the simulation. Then, a data processing technique has been applied to the FDTD reflection data to get a radar image for remote sensing of the internal structure of the wall. We compared the two different source excitations in the FDTD simulation; (1) commonly-used isotropic point sources and (2) polynomial curve fitting sources of the measured radiation pattern. As a result, when we apply the measured antenna pattern into the FDTD simulation, we could obtain about 2.5 dB higher signal to noise level than using a plane wave incidence with isotropic sources.