• Title/Summary/Keyword: 비탈회표본

Search Result 8, Processing Time 0.019 seconds

BICOMPATIBILITY OF BICOMTALS IN RABBIT BONE (임플란트 생체금속들과 골조직간의 생체적합도에 관한 연구)

  • Han, Chong-Hyun;Hoe, Seong-Joo;Chung, Chong-Pyong;Ku, Young;Rhyu, In-Chul;Choi, Yong-Chang
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.3
    • /
    • pp.557-565
    • /
    • 1997
  • Screw-shaped implants of commercially pure (c.p.) titanium, c.p. niobium, c.p. zirconium, and stainless steel(Sus 304) were inserted in the rabbit tibial bone over 12 weeks of follow-up. New developed torque gauge instrument was used to evaluate the implant holding power and a image analysis program coupled to a microscope was used for histomorphometry. The three best consecutive threads of each implant were measured. Quantitative analyses at 12 weeks revealed a partial bone contact to the four kinds investigated metals. There were no obvious adverse tissue reactions to any of the biomaterials. At 12 weeks the average removal torques for titanium, niobium and zirconium were better than that needed for Sus 304 screws, on the other hand high score of bony contact ratio of titanium and niobium were showed in comparison to those of zirconium and Sus 304. There was no significant differences in the amount of interfacial bone of zirconium and Sus 304 whereas there was significant difference in the torque forces of niobium and Sus 304. Three months after implant insertion, the average removal torque was 6.64 Ncm for the titanium, 6.57 Ncm for the niobium, 6.38 Ncm for the zirconium, and 4.25 Ncm for the Sus 304. On average bone contacts there were 51.24% in the titanium, 48.19% in the niobium, 31.79% in the zirconium, 23.54% in the Sus 304. Biocompatibility of the titanium, niobium and zirconium was acceptable level in comparison to the Sus 304.

  • PDF

Histologic and biomechanical characteristics of orthodontic self-drilling and self-tapping microscrew implants (Self drilling과 Self-tapping microscrew implants의 조직학적 및 생역학적인 비교)

  • Park, Hyo-Sang;Yen, Shue;Jeoung, Seong-Hwa
    • The korean journal of orthodontics
    • /
    • v.36 no.4
    • /
    • pp.295-307
    • /
    • 2006
  • Objective: The purpose of this study was to compare the histological and biomechanical characteristics of self-tapping and self-drilling microscrew implants. Methods: 112 microscrew implants (56 self-drilling and 56 self-tapping) were placed into the tibia of 28 rabbits. The implants were loaded immediately with no force, light (100 gm), or heavy force (200 gm) with nickel-titanium coil springs. The animals were sacrificed at 3- and 5-weeks after placement and histologic and histomorphometric analysis were performed under a microscope. Results: All microscrew implants stayed firm throughout the experiment. There was no significant difference between self-drilling and self-tapping microscrew implants both in peak insertion and removal torques. Histologic examinations showed there were more defects in the self-tapping than the self-drilling microscrew implants, and newly formed immature bone was increased at the interface in the self-tapping 5-week group. There was proliferation of bone towards the outer surface of the implant and/or toward the marrow space in the self-drilling group. Histologically, self-drilling microscrew implants provided more bone contact initially but the two methods became similar at 5 weeks. Conclusion: These results indicate the two methods can be used for microscrew implant placement, but when using self-tapping microscrew implants, it seems better to use light force in the early stages.

Bone reaction to bovine hydroxyapatite grafted in the mandibular defects of beagle dogs. (성견의 하악 골 결손부에 이식한 생체 유래 골 이식재 (OCS-B)에 대한 치조골의 반응)

  • Byun, Yu-Kyung;Park, Jun-Beom;Kim, Tea-Il;Seol, Yang-Jo;Lee, Yong-Moo;Ku, Young;Lee, Hye-Ja;Chung, Chong-Pyoung;Han, Soo-Boo;Rhyu, In-Chul
    • Journal of Periodontal and Implant Science
    • /
    • v.36 no.1
    • /
    • pp.39-49
    • /
    • 2006
  • 1. 목 적 이 연구의 목적은 성견의 하악 골 결손부에 이식한 생체 유래 골 이식재에 대한 치조골의 반응을 알아보는 것이다. 2. 연구방법 및 재료 생후 1년 이상 된 성견 4마리의 하악 제2소구치 및 제 4 소구치를 발거하고 발치와에 금원심 폭경 8mm, 협설 폭경 5mm, 치조정에서의 깊이 6mm인 결손부를 형성하였다. 4주간의 자연 치유 후 판막을 형성하여 결손부의 크기를 확인하였다. 각각의 결손부 크기가 일정하도록 수정한 후 '이식재+차폐막'군에는 OCS-B을 이식하고 Bio-gide을 차단막으로 사용한 후 봉합하고 '이식재군'은 OCS-B 이식 후 차폐막 없이 봉합하였으며 '비이식'군은 아무런 처치없이 일차봉합하였다. 수술 4, 6주에 실험동물을 각각 희생시켜 실험부위를 적출하고 비탈회 연마 표본을 제작하여 골 치유 양성을 조직학적 및 조직계측학적으로 관찰하였다. 3. 연구결과 이식재 비이식군 및 이식군 모돼서 별다른 부작용없이 잘 치유되었다. 세 실험군 모두에서 술후 4주에 비교하여 술 후 6주에서의 결손부 산생골 형성량이 증가하였다. 술후 4주 소견에서 비이식군은 결손부 주변부위에서 골이 생성되어 나오는 양상을 보였으며 이식군은 이식재 주변으로 골침착 시작되는 것을 관찰할 수 있었다. 술후 6주 소견에서 비이식군은 결손부 경계부로부터의 지속적인 골 생성을 관찰할 수 있었으며 이식군은 이식재 주변으로 침착된 골의 양이 많아지고 신생골이 가교를 형성하는 것을 관찰할 수 있었다. 4. 결 론 차폐막 유무와 상관없이 OCS-B는 염증반응을 전혀 일으키지 않았으며 우수한 골 전도성을 보였다. 또한 결손부의 형태를 잘 유지하여 골재생을 위한 공간을 확보할 수 있었다. 이는 OCS-B가 골이식재로서의 필요조건을 갖추었음을 확인한 결과이며 보다 장기적인 관찰에서 OCS-B의 흡수 가능성을 확인하는 것이 필요할 것으로 보인다.

The experimental study of early loading on the Miniplate in the beagle dog (성견의 하악골에 식립된 Miniplate에 가한 조기 부하의 영향에 관한 실험적 연구)

  • Chung, Yong-Koo;Lee, Young-Jun;Chung, Kyu-Rhim
    • The korean journal of orthodontics
    • /
    • v.33 no.4 s.99
    • /
    • pp.307-317
    • /
    • 2003
  • Conventional osseointegrated titanium implants have many limitations; large size, limited location for placement of the implant, severity of the surgery, discomfort of initial healing, difficulty of oral hygiene and uncontrollable force direction. Recently titanium miniscrew and miniplate have been used for an alternative to conventional dental implant. But in relation to miniplate, miniscrew has disadvantages in that more potential inflammation, light orthodontic force application and limited orthodontic application. This study was conducted to evaluate the effectiveness of miniplate by observing the reactions of peri-implant tissues to early orthodontic and orthopedic loading of titanium miniplate. In four adult beagle dogs 10 miniplates were inserted into the alveolar bone using 20 osseointegrated titanium screws. 4 miniplates were placed in two dogs(dogA, B) and 6 miniplates in two dogs(dogC, D). In dogA, B miniplates were loaded with 200gm of force immediately after placement for 15 weeks. In dogc, D, miniplates were loaded with 400gm of force immediately after placement for 8 weeks. Miniplates of dogA were removed, dogA was healed for 4 weeks, and the area which was removed of miniscrew was examined. Following an observation period, the miniplates including miniscrews and the surrounding bone of dogB and dogC, D were removed, respectively. Undecalcified section along the long axis of miniscrews were made and the degree of osseointegration was examined under the light microscope. The results were as follows. 1. In the histologic features there was direct contact between bone and miniscrew in all groups except one, dogC control group. The loaded miniscrew demonstrated only a slight increase of the osseous proximaty when compared with unloaded miniscrew 2. There was no significant difference of the osseointegration of Peri-miniscrew surface between dogB and dogC, D. But dogB showed slightly more increased bone apposition than dogC, D 3. The gingiva overlapping the miniplate and miniscrew showed no inflammatory sign in clinical and histological aspects. 4. The impaled hard and soft tissues at the area which was removed of miniscrews showed good healing without inflammatory reaction. 5. The mobility showed slight increase in un-loaded miniplate but that was insignificant. Based on the results of this study, miniplate(C-tube) can be used as a firm osseous orthodontic and orthopedic anchorage unit immediately after insertion.

Effects of drilling process in stability of micro-implants used for the orthodontic anchorage (고정원을 위한 micro-implant 매식시 drilling 유무에 따른 안정성에 관한 연구)

  • Chang, Young-Il;Kim, Jong-Wan
    • The korean journal of orthodontics
    • /
    • v.32 no.2 s.91
    • /
    • pp.107-115
    • /
    • 2002
  • The aim of this study was to investigate experimentally the mechanical and histological effect of drilling process on the stability of micro-implant used for the orthodontic anchorage. For this purpose, 32 micro-implants(Osas$^{(R)}$, Epoch medical, ${\phi}$1.6 mm) were inserted into maxilla, mandible and palate in two beagle dogs. 16 micro-implants(8 per dog) were inserted after drilling with pilot drilling bur (drill method group). 16 micro-implants(8 per dog) were inserted without drilling (drill-free method group). After 1 week, micro-implants were loaded by means of Ni-Ti coil spring (Ni-Ti springs-extension$^{(R)}$, Ormco) with 200-300 gm force. Following 12 weeks, the micro-implants and the surrounding bone were removed. Before sacrifice, the mobilities were tested with Periotest$^{(R)}$(Siemens). Undecalcified serial sections with the long axis were made and the histologic evaluations were done. The results of this study were as follow ; 1. The osseointegration was found in both of drill-free method group and drill method group 2. Two of drill method group and one of drill-free method group in 32 micro-implants were lost after loading. 3. The mobilities of drill-free method group were less than drill method group 4. The bone contact on surface of micro-implants in drill-free method group was more than drill method group but there was no significant difference between groups. 5. The bone density in threads of micro-implants in drill-free method group was more than drill method group and there was significant difference between groups. These results suggest that drill-free method in insertion of micro-implants is superior to drill method on the stabilities, bone remodeling and osseointegrations under early loading.

The effect of early loading on the direct bone-to-implant surface contact of the orthodontic osseointegrated titanium implant (교정력이 골유착성 티타니움 임프란트의 초기 고정에 미치는 영향에 관한 실험적 연구)

  • Chung, Kyu-Rhim;Lee, Sung-Ja
    • The korean journal of orthodontics
    • /
    • v.31 no.2 s.85
    • /
    • pp.173-185
    • /
    • 2001
  • The orthodontic osseointegrated titanium implant, a kind of intraoral skeletal anchorage can be an alternative to tooth-borne anchorage, in case that the conventional tooth-borne anchorage is not available or the anchorage is critical. This study was conducted to elucidate the effect of early loading on the osseointegration of the orthodontic titanium implant and the healing process of the impaired bone at the site of implant after removing it. In two adult beagle dogs24 osseointegrated titanium implants were inserted into the alveolar bone, with 12 implants placed in each dog. In dog1, 6 out of 12 implants were loaded with 200-300gm of force immediately after placing, and the remaining 6 implants were not loaded for 4weeks. In dog2, all 12 implants had healing period of 4weeks, and then were loaded with 200-300gm of force for another 4weeks. Following an observation period of 4 and 8 weeks, the animals were sacrificed. Then the implants and the surrounding bone of dog1 and dog2 were removed, respectively. Undecalcified sections along the long axis of implant were made and the degree of osseointegration was examined under the light microscope. The results were as follows. 1. In the histologic features of tissues around implants anchored in dog1, there was no difference between immediately loaded implants and unloaded implants. Immature woven bone was ingrowing into the thread spaces from the original compacta and in direct contact with the implant surface in part. 2. The premature loading just after 4weeks healing period did not halt the progress of the osseointegration between bone and implant surface. The woven bone around the implants was maturing into the lamellar bone which resembled the structure of the original compacta at the end of 8weeks observation period. 3. Most implants with the inflammed surrounding mucosa were lost or mobile. The mobile implants were encapsulated by fibrous connective tissue which separated the implant surface from the bone. 4. The impaired bone at the site of the implant failed to anchor was showing recovery without inflammatory reaction 2weeks after removing, with the immaure woven bone lined by active osteoblasts and osteoid. Based on the results of this study, the integration of this orthodontic implant seemed to be impaired by the inflammation of the tissue surrounding the Implant rather than by early loading on implant, and increased with time lapsed after placing the implant. The use of implant described in this report can be recommended as an orthodontic anchorage unit immediately after insertion under the careful control of orthodontic force applied and plaque.

  • PDF

Early histological change in hard tissue from orthodontic force placed on microscrews in ovariectomized rats (난소 적출 백서에 식립된 마이크로스크류에 교정력 부여 시 나타난 초기 경조직 변화에 관한 연구)

  • Lee, Dea-Seung;Chang, Moon-Jung;Lee, Jin-Woo
    • The korean journal of orthodontics
    • /
    • v.36 no.2 s.115
    • /
    • pp.103-113
    • /
    • 2006
  • Most elderly women experience a decrease in their bone density due to a deficiency of calcium intake, ovariectomy, or menopause. This study evaluated the usability of the microscrew as a skeletal anchorage system in these orthodontic treatment cases, using rats as a research group. The 4 month old sprague-dawley species rats were divided into two groups, the OS (Ovariectomy Screw), and the SS (Sham operation Screw) group. In both the OS and SS groups, microscrews were implanted into the palatal bone between the upper molar teeth and two upper incisors were retracted using NETE coil spring with 75 g of force. After 3days, the again after 7 days, 7 rats in each group were sacrificed. Three days before they were sacrificed, Alizarin red S was intraperitoneally injected, and their maxillary bone, tibia and blood from their hearts were taken. The components of the extracted blood were biochemically analyzed and non-decalcified grinding resin sections for maxillary bone and tibia were made. The sections were examined with a polarization microscope, and fluorescent microscope. Smaller concentrations of Ca and P, the inorganic substances closely related to bone density, were found in the extracted blood of the OS group. Both OS and SS groups showed a possibility of bone remodeling with a high concentration of ALP after 7 days. An increase in bone density on the tension and compression sides of the microscrew and the tension side of the tooth for both OS and SS groups was confirmed with a polarization microscope. However, the bone density of the pressure side of the tooth and apical side was decreased. More deposits of Alizarin red S in the bone after 7 days rather than 3 days seen with a fluorescent microscope suggested the existence of new bone formation.

Histomorphometry and Stability Analysis of Loaded Implants with two Different Surface Conditions in Beagle Dogs (하중을 가한 두 가지 표면의 임플란트에 관한 조직형태학적 분석 및 안정성 분석 (비글견을 이용한 연구))

  • Kim, Sang-Mi;Kim, Dae-Gon;Cho, Lee-Ra;Park, Chan-Jin
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.24 no.4
    • /
    • pp.337-349
    • /
    • 2008
  • Despite an improved bone reactions of Mg-incorporated implants in the animals, little yet has been carried out by the experimental investigations in functional loading conditions. This study investigated the clinical and histologic parameters of osseointegrated Mg-incorporated implants in delayed loading conditions. A total of 36 solid screw implants (diameter 3.75 mm, length 10mm) were placed in the mandibles of 6 beagle dogs. Test groups included 18 Mg-incorporated implants. Turned titanium Implants served as control. Gold crowns were inserted 3 months. Radiographic assessments and stabilitytests were performed at the time of fixture installation, $2^{nd}$ stage surgery, 1 and 3 months after loading. Histological observations and morphometrical measurements were also performed. Of 36 implants, 32 displayed no discernible mobility, corresponding to successful clinical function. There was no statistically significant difference between test implants and controls in marginal bone levels (p=0.413) and RFA values. The mean BIC % in the Mg-implants was $54.4{\pm}20.2%$. The mean BIC % in the turned implant was $48.9{\pm}8.0%$. These differences between the Mg-implant and control implant were not statistically significant (P=0.264). In the limitation of this study, bone-to-implant contact (BIC) and bone area of Mg-incorporated oxidized implant were similar to machine-turned implant. The stability analysis showed no significantly different ISQ values and marginal bone loss between two groups. Considering time-dependent bone responses of Mg-implant, it seems that Mg-implants enhanced bone responses in early loading conditions and osseointegrated similarly to cp Ti implants in delayed loading conditions. However, further investigations are necessary to obtain long-term bone response of the Mg-implant in human.