• Title/Summary/Keyword: 비좌굴가새

Search Result 33, Processing Time 0.018 seconds

Experimental Study on the Vibration Control Capacity of Hybrid Buckling-Restrained Braces (하이브리드 비좌굴가새의 진동제어능력에 관한 실험적 연구)

  • Kim, Do Hyun;Ju, Young Kyu;Kim, Myung Han;Sung, Woo Gi;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.83-91
    • /
    • 2009
  • Buckling Restrained Braces (BRBs) show good seismic behavior. They do not dissipate energy, however, when they are subjected to minor earthquakes or wind. Hybrid Buckling Restrained Braces (H-BRBs), which can improve the wind performance of the BRB system, are a kind of hybrid damper system composed of a viscoelastic damper and BRBs. In this paper, two H-BRB specimens with different cores were experimentally investigated to ensure the structural behavior of the H-BRB system in an elastic range. The axial deformation of the primary resisting system was compared with that of the secondary resisting system, and the equivalent damping ratio of the H-BRBs was estimated. It was concluded that H-BRBs with double shear dampers show good structural behavior and are applicable to tall buildings, to improve the building performance at a comfortable level.

Experimental Investigation of The Lateral Retrofitting Effect of FRP Sheet and Buckling-restrained Braces for Beam-Column Joints (FRP Sheet와 비좌굴 가새를 적용한 보-기둥 접합부의 횡방향 보강효과에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Kim, Min-Sook;Lee, Young-Hak;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.49-56
    • /
    • 2011
  • The strengthening effect of CFRP sheet and AFRP sheet with buckling-restrained brace for Beam-Column joints under constant axial and cyclic lateral loading is evaluated experimentally in this paper. Six test specimens were constructed. The main test parameters included the FRP Sheet and Buckling-restrained braces. The results of the tests were analyzed by focusing on their mode of failure, maximum load, ductility indexes, and energy dissipation capacity. Test results indicated that CFRP Sheet with the buckling-restrained brace system significantly increased the strength and stiffness of the specimen and that it was the most adequate retrofitting method.

Hysteresis Characteristics of Buckling Restrained Brace with Precast RC Restraining Elements (조립형 프리캐스트 콘크리트 보강재를 가지는 비좌굴가새의 이력특성)

  • Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.72-84
    • /
    • 2016
  • The conventional brace system is generally accepted as the lateral load resisting system for steel structures due to efficient story drift control and economic feasibility. But lateral stiffness of the structure decreases when buckling happens to the brace in compression, so that it results in unstable structure with unstable hysteresis behavior through strength deterioration. Buckling restrained brace(BRB) system, in which steel core is confined by mortar/concrete-filled tube, represents stable behavior in the post-yield range because the core's buckling is restrained. So, seismic performance of BRB is much better than that of conventional brace system in point of energy absorption capacity, and it is applied the most in high seismicity regions as damper element. BRBs with various shaped-sections have been developed across the globe, but the shapes experimented in Korea are now quite limited. In this study, we considered built-up type of restraining member made up of precast reinforcement concrete and the steel core. we experimented the BRB according to AISC(2005) and evaluated seismic performances and hysteresis characteristics.

tudy on Seismic Design of Buckling Restrained Braced Frame System Using Inverse Stiffness Method (역강성 설계법을 이용한 비좌굴 가새골조시스템의 내진설계에 관한 연구)

  • Kim, Se-Hyun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.106-114
    • /
    • 2006
  • This study proposed the applicability of inverse stiffness method on the seismic design for steel frame with buckling restrained braces and the design results were compared with former research's. The concept of this method is simple and efficient. Furthermore it is able to reflect the high mode's effect and control the ductility factors of each story individually. Design results using the proposed method showed that according to increase of the given target drift, the areas of brace generally decreased but partially increased in some stories of the tall structure with very large ductility. And the post yield stiffness ratio's variation had more effect on the design results in the small post yield stiffness ratio.

Energy-Based Seismic Design of Buckling-Restrained Braced Frame Using Hysteretic Energy Spectrum (이력에너지 스펙트럼을 이용한 비좌굴 가새골조의 내진설계)

  • 최현훈;김진구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.63-69
    • /
    • 2003
  • In this study seismic design procedure for buckling-restrained braced frame systems was proposed using hysteretic energy spectrum and accumulated ductility spectrum constructed from single degree of freedom systems. The hysteretic energy spectra and accumulated ductility spectra corresponding to target ductility ratio were constructed first. The cross-sectional area of braces required to meet a given target displacement was obtained by equating the hysteretic energy demand to the accumulated plastic energy dissipated by braces. Twenty earthquake records were utilized to construct the spectra and to verify the validity of the design procedure. According to analysis results of three- and eight-story buckling-restrained braced frame structures designed using the proposed method, the mean values for the top story displacement correspond well with the given performance target displacements. Also, the inter-story drifts turned out to be relatively uniform over the structure height, which is desirable because uniform inter-story drifts indicate uniform damage distribution. Therefore if was concluded that the proposed energy-based method could be a reliable alternative to conventional strength-based design procedure for structures with buckling-restrained braces.

Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels (고강도강 비좌굴 가새의 구조성능 평가)

  • Park, Man Woo;Ju, Young Kyu;Kim, Myeong Han;Kim, Ji Young;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.355-364
    • /
    • 2008
  • The Buckling-Restrained Braces (BRB) has been developed to inhibit buckling and exhibit stable behavior under both tensile and compressive cycles. In this study, an experimental has been conducted by using the strength of its members and loading protocols as parameters to evaluate the structural performance of BRB (without in-filled concrete). Specimens are composed of an inner core and an outer tube with different steel strengths. When high-strength steels were used as inner cores, the ductility of BRB decreasedm and the requirements (Cumulative Plastic Ductility) of the AISC Seismic Provisions were not satisfied. However, when high-strength steels were used as inner cores instead of conventional strength steel cores, the maximum capacity increased significantly and displayed similar performance in total energy dissipation.

Structural Performance Evaluation of Buckling-Restrained Braces Made of High-Strength Steels (고강도강 비좌굴 가새의 구조성능 평가)

  • Park, Man Woo;Ju, Young Kyu;Kim, Myeong Han;Kim, Ji Young;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.33-42
    • /
    • 2008
  • Buckling-Restrained Braces (BRB) has been developed to inhibit buckling and exhibit stable behavior underboth tensile and compresive cycles. In this study, an experime nt has been conducted by using the strength of its members and loading protocols as parameters to evaluate the structural performance of BRB (without in-filed concrete). Specimens are composed of an inner core and an outer tube with diferent steel strengths. When high-strength steels were used as iner cores, the ductility of BRB decreased, and the requirements (Cumulative Plastic Ductility) of the AISC Seismic Provisions were not satisfied. however, when high-strength steels were used as inner cores instead of conventional strength stel cores, the maximum capacity increased significantly and displayed similar performance in total energy dissipation.

Seismic Behavior of a Five-story RC Structure Retrofitted with Buckling-Restrained Braces Using Time-dependent Elements (시간종속요소를 이용한 5층 RC건축물의 비좌굴가새 보강에 대한 내진거동)

  • Shin, Ji-Uk;Lee, Ki-Hak;Lee, Do-Hyung;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.11-21
    • /
    • 2010
  • This study presents seismic responses of 5-story reinforced concrete structures retrofitted with the buckling-restrained braces using a time-dependent element. The time-dependent element having birth and death times can freely be activated within the user defined time intervals during the time history analysis. The buckling-restrained brace that showed the largest energy dissipation capacity among the test specimens in previous research was used for retrofitting the RC buildings in this study. It was assumed that the first story of the damaged building under the first earthquake was retrofitted with the buckling-restrained braces considered as the time-dependent element before the second of the successive earthquakes occurs. Under this assumption, this paper compares seismic responses of the RC structures with the time-dependent element subjected to the successive earthquake. Subjected to the second earthquake, it was observed that activation of the BRB systems largely decreases deformation of the moment frame where the damage was concentrated under the first earthquake. However, damages to the shear wall systems were increased after activation of the BRB systems. Since the cumulative damages of the shear wall systems were infinitesimal compared with the retrofit effect of the moment frame, the BRB system was effective under the successive earthquake.