• Title/Summary/Keyword: 비정형 패널

Search Result 50, Processing Time 0.022 seconds

Method Development of Location Point Control For Freeform Metal Panel Installation - Focused on the Application of LH JinJu New Office- (비정형 금속패널 설치를 위한 지점 제어 공법 개발 -LH 진주 신사옥 적용을 중심으로-)

  • Kim, Sung-Jin;Kim, Chung-Shik;Ryu, Han-Guk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.258-259
    • /
    • 2013
  • Recently, architectural design has been changing from formal design to freeform design due to the digitalization of construction industry. Especially, the formal design has been accepted as a design trend recently and applied many times as a design concept in the architectural design competitions such as turn-key. However, various deflects such as water leak and cracks have been occurred because the traditional construction methods had been applied without any revision or adaptation of the formal construction method for the freeform building construction. Therefore this research proposes location point control method for freeform metal panel installation which is focused on the application of LH JinJu new office.

  • PDF

BIM-Based Generation of Free-form Building Panelization Model (BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구)

  • Kim, Yang-Gil;Lee, Yun-Gu;Ham, Nam-Hyuk;Kim, Jae-Jun
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

An Experiment on the Manufacture of Free-Form Panel for Analysis of the Requirements of Concrete Extrusion Nozzles (콘크리트 압출 노즐의 요구사항 분석을 위한 비정형 패널 제작 실험)

  • Kim, Hye-Kwon;Youn, Jong-Young;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.91-92
    • /
    • 2023
  • With the development of technology, interest in the implementation of free-form buildings is increasing, and research on producing free-form panels is being conducted accordingly. Since free-form buildings are curved and consist of geometric shapes, there are many problems with the production technology of free-form panels that implement them. Due to the inability to reuse molds, the cost of disposal of construction waste and waste of manpower for assembly increase the construction period and construction cost. To improve these limitations, a 3D printed concrete nozzle for FCP production was developed. However, this technology is not quantitatively extruded according to the shape of the panel, and there is a problem that residues are generated. Therefore, an free-form panel extrusion experiment was conducted to analyze the limitations of existing nozzles and to analyze the requirements for the development of new concrete extrusion nozzles. Existing nozzles were unable to be quantitatively extruded, resulting in errors. Due to the weak pressure of the screw and the inability to adjust the internal pressure, detailed extrusion speed control was impossible, and residue generation in the opening and closing device seemed to be the cause. Therefore, a pump capable of quantitative concrete pressure transfer and a pressure control device for easy extrusion of concrete are required. In addition, it is judged that it is necessary to develop an opening and closing device and an extrusion device that do not generate residues. The results of this study are expected to provide information for FCP production and production and to be a basic study of technologies necessary for the production of free-form building panels.

  • PDF

Analysis of Factors Related to Maintaining FCP Thickness in the Manufacturing Process of Freeform Concrete Panel (FCP(Free-form Concrete Panel)제작 과정에서 FCP두께유지에 관련한 영향요인 분석)

  • Jeong, Kyeong-Tae;Kim, Ki-Hyuk;Yun, Ji-Yeong;Song, Ha-Young;Lee, Dong-Hoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.4-5
    • /
    • 2019
  • With recent advances in computer technology, the ratio of free-form building designs to those of the past is increasing gradually. However, the current technology of free-form structure is very low. The core technology for free-form building implementation is the manufacturing technology of FCP (Free-form Concrete Panel), which indicates an unformed outside, and through the development of FCP manufacturing technology, the construction technology of free-form architecture can be enhanced. The inside and outside of an free-form building should be represented by the designer's intended curvature, and the panel's thickness by segment should be constant. For this reason, the technology that keeps the thickness of panels constant during the FCP production process is a key technology that can improve the quality of FCP. In this study, a basic study on ways to maintain a constant thickness of FCP is conducted.

  • PDF

A Basic Study of Free-form Concrete Panel Production Process using 3D Plastering Technique (3D Plastering 기법에 의한 Free-form Concrete Panel의 생산 프로세스 기초 연구)

  • Lim, Jeeyoung;oh, Jinhyuk;Kim, Sunkuk
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.71-72
    • /
    • 2022
  • In the case of free-form buildings, it is difficult to reuse the form for panel production because the shape and size of the interior and exterior panels of the building are different. In general, it is a free-form concrete panel (FCP) production technology using the existing plywood formwork, and the form is produced in a different shape each time and is discarded after only one use. The production of these disposable forms requires enormous resources, including materials, labor and time. Hence, it is necessary to develop innovative forms that can be reused for sustainable FCP construction. In this study, a technology has been developed that combines 3D Plastering Technique (3DPT) to produce FCP. By applying this technology to free-form building projects, the time and cost required for FCP production can be reduced. However, specific studies on the production process for this technology have not been done yet. Therefore, the objective of this study is a basic study of free-form concrete panel production process using 3D plastering technique.

  • PDF

A Study on the Requirements for the Development of Side Mould for FCP(Free-form Concrete Panel) Manufacturing Equipment (FCP(Free-form Concrete Panel)생산 장비용 측면 거푸집 개발을 위한 요구사항 분석연구)

  • Jeong, Kyeong-Tae;Yun, Ji-Yeong;Youn, Jong-Yeong;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.12-13
    • /
    • 2020
  • Free-form buildings usually have large curved shapes on the outside. In order to construct this curved shape, the exterior of the building must be divided into easy-to-manufacture shapes, and the segmented panel is called the FCP(Free-form Concrete Panel). These FCPs have different shapes and cannot reuse molds. To solve these problems, the researchers developed FCP manufacturing equipment to manufacture a mould of FCP. However, the developed equipment alone cannot completely manufacture FCP's mould. This is because there is no mould to implement side of FCP. Therefore, it is necessary to develop a side form of FCP that can be applied to FCP manufacturing equipment. To this end, this study analyzes the basic requirements that side mould should have before developing side mould.

  • PDF

Limitation and Solution of Free-form Silicone Mold (FSM) used in Free-form Concrete Panel (FCP) Manufacture (FCP(Free-form Concrete Panel) 제작에 사용되는 FSM(Free-form Silicone Mold)의 한계와 해결방안)

  • Jeong, Kyeong-Tae;Youn, Jong-Young;Yu, Chae-Yeon;Lee, Dong-Hoon3
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.21-22
    • /
    • 2023
  • In order to manufacture high-quality free-form concrete panel (FCP), it is necessary to analyze the limitations of free-form silicone mold (FSM) and conduct technology development research. Currently, the FSM used in FCP manufacture is classified into a side silicon mold(SSM) and a lower silicon mold(LSM). In this study, the limitations of each silicon mold were analyzed and solutions were proposed. In the case of side silicon mold, there is a limit to cannot supporting the side pressure of concrete. Therefore, a mold stacking method was proposed, and at the same time, a process of correcting the movement value of the rod was proposed. In the case of the lower silicon mold, there is a limit to completely implementing the design shape. Therefore, a real-time scanning method and a process of displaying FCP shape coordinates were proposed. The results of this study are expected to be used as basic data for manufacturing high-quality FCP.

  • PDF

Paneling of Curved NURBS Surface through Marching Geodesic - Application on Compound Surface - (일방향 지오데식을 활용한 곡면 형상의 패널링 - 복합 곡면을 중심으로 -)

  • Hong, Ji-Hak;Sung, Woo-Jae
    • Journal of KIBIM
    • /
    • v.11 no.4
    • /
    • pp.42-52
    • /
    • 2021
  • Paneling building facades is one of the essential procedures in building construction. Traditionally, it has been an easy task of simply projecting paneling patterns drawn in drawing boards onto 3d building facades. However, as many organic or curved building shapes are designed and constructed in modern architectural practices, the traditional one-to-one projection is becoming obsolete for the building types of the kind. That is primarily because of the geometrical discrepancies between 2d drawing boards and 3d curved building surfaces. In addition, curved compound surfaces are often utilized to accommodate the complicated spatial programs, building codes, and zoning regulations or to achieve harmonious geometrical relationships with neighboring buildings in highly developed urban contexts. The use of the compound surface apparently makes the traditional paneling pattern projection more challenging. Various mapping technics have been introduced to deal with the inabilities of the projection methods for curved facades. The mapping methods translate geometries on a 2d surface into a 3d building façade at the same topological locations rather than relying on Euclidean or Affine projection. However, due to the intrinsic differences of the planar 2d and curved 3d surfaces, the mapping often comes with noticeable distortions of the paneling patterns. Thus, this paper proposes a practical method of drawing paneling patterns directly on a curved compound surface utilizing Geodesic, which is faithful to any curved surface, to minimize unnecessary distortions.

A Basic Study on the Development of Side Silicone Mold Support Device for Improving the Quality of FCP (FCP(Free-Form Concrete Panel) 품질 향상을 위한 측면 실리콘 거푸집 지지장치 개발 기초연구)

  • Jeong, Kyeongtae;Kim, Jihye;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.165-166
    • /
    • 2023
  • Free-form Concrete Panel(FCP) is each panel that composes the concrete exterior skin of Free-form building. FCPs contain curved surfaces, and FCPs have different curvature, size, and angles. In order to manufacture FCP, high technology is required, and it is currently difficult to manufacture it according to the design shape. In particular, many errors occur in the side shape of FCP. This is because when the side silicone mold is applied, it is installed without a coupling method between molds and support device. In this study, basic research was conducted to develop a side silicone mold support device to solve the above problems. We classified the required performance and derived the detailed requirements. Also, Based on this, we drew the basic design of the support device. We plans to conduct design improvement, mock-up making, and FCP manufacturing experiments through future research.

  • PDF

A Study on the Concrete Extrusion Method for Precision FCP Fabrication (정밀한 FCP 제작을 위한 콘크리트 압출 방식 연구)

  • Kim, Hye-Kwon;Kim, Ji-Hye;Kim, Sungjin;Lee, Donghoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.133-134
    • /
    • 2023
  • Free-form buildings have a curved shape and are composed of geometric shapes, which require high precision. Therefore, this study proposed a new extrusion method, a piston method, that improves the precision of FCP by automatically extruding a predetermined amount of concrete by improving the aforementioned limitations. The technology to extrude a predetermined amount of concrete by applying pistons is expected to shorten construction period and increase economic efficiency by improving the precision and productivity of free-form panels.

  • PDF