• Title/Summary/Keyword: 비정형구조

Search Result 202, Processing Time 0.017 seconds

Pressure Fluctuations on Tapered and Setback Tall Buildings (비정형 초고층 건물의 변동 풍압)

  • Kim, Yong-Chul;Kanda, Jun;Tamura, Yukio;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.97-104
    • /
    • 2013
  • Recent tall buildings tend to have unconventional shapes as a prevailing, which is effective for suppressing across-wind responses. Suppression of across-wind responses is a major factor in tall building projects, and the so called aerodynamic modification method is comprehensively used. The purpose of the present study is to investigate the pressure fluctuations on tapered and setback tall buildings, including peak pressures, power spectra and coherences through the synchronous multi-pressure sensing system techniques. And flow measurements around the models were conducted to investigate the condition of vortex shedding. The results show that by tapering and setback, different distributions of mean pressure coefficients at leeward surface were found, which is caused by the geometric characteristics of the models. And the power spectra of wind pressures at sideward surface become wideband and the peak frequencies are different depending on heights, which makes the correlation near the Strouhal component low or even negative. The differences in shedding frequencies were also confirmed by the flow fields around the models.

Characteristics of wind-Induced Coupled Motion of Tapered and Setback Tall Buildings (비정형 초고층 건물의 바람에 의한 편심응답 특성)

  • Kim, Yong-Chul;Kanda, Jun;Tamura, Yukio
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.79-86
    • /
    • 2013
  • For most of recent tall buildings, one characteristic is that their building shapes vary with height such as taper and setback, and this implies that the distribution of their structural components may also vary with height. Because of these structural variations, although the sectional shapes of these buildings are symmetric, it is difficult to say whether or not they are structurally symmetric. The acceleration responses of structurally asymmetric tall buildings are larger than those of non-eccentric buildings, thus raising the possibility of problems during strong winds and typhoons. This paper describes wind tunnel tests carried out using building models with height variations and acceleration response analyses, and discusses the resulting response characteristics. For tapered and setback buildings, although the across-wind accelerations are larger than those of a square building, the total root-mean-square accelerations remain small because of smaller along-wind and torsional rms accelerations. And it was found that the effects of statistical couplings between along-wind force and other two forces are negligible.

P-version Finite Element Analysis of the Irregular Shaped Plates with Singularities (특이성을 갖는 비정형 평판의 p-version 유한요소해석)

  • 우광성
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.101-111
    • /
    • 1990
  • The elastic analysis of floor slabs using the p-version of finite element method encounters stress singularities at certain types of reentrant corners, openings and cut-outs. Results obtained using the computer code based on C.deg. - hierarchic plate element formulated by Reissner-Mindlin theory are compared with theoretical predictions and with computational results reported in the literature. The convergence rate of h-, p- and hp-version can be estimated on the basis of the energy norm in global sense. If accuracy in terms of the number of degree-of-freedom is used as a criterion, the solutions presented here are the most efficient that have been published up to date. Examples are the rhombic plate with the obtuse angle of 150.deg. and the square plate with cut-outs.

  • PDF

Evaluation of Maximum Lateral Pressure on the 3D Printed Irregular-Shaped Formwork by Finite Element Analysis (3D 프린터로 제작된 비정형 거푸집의 최대 측압에 대한 유한요소해석)

  • Lee, Jeong-Ho;Ju, Young K.;Kim, Hak-Beom
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.167-174
    • /
    • 2017
  • The F3D(Free-Form Formwork 3D Printer) technology that manufactures EPS(Expanded Polystyrene) formworks for irregular-shaped concrete structures by 3D printers was developed to reduce the cost and time. Because of weak strength and low elastic modulus of the EPS, structural performance including lateral pressure by fresh concrete of the formwork that consisted of EPS should be investigated. In order to calculate lateral pressures acting on formwork, several variables including sizes, shapes of formwork, tangential force(fricition) between fresh concrete and formwork, and material properties of fresh concrete should be considered. However, current regulations have not considered the properties of concrete, only focused on vertical formwork. Galleo introduced 3-dimensional finite element analysis models to calculate lateral pressure on formwork. Thus, proposed finite element analysis model based on previous studies were verified for vertical formwork and irregular-shaped formwork. The test results were compared with those by FEM analysis. As a result, the test agrees well with the analysis.

Design and Experimental Evaluations of Non-Uniform Precast Ultra High-Strength Concrete Beams (비정형 프리캐스트 초고강도 콘크리트 보의 설계 및 실험 평가)

  • Kim, Hoyeon;Cho, Chang-Geun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.99-108
    • /
    • 2018
  • This paper presents the design, analysis, and experimental evaluations of precast reinforced UHPC (ultra high-performance concrete) beams with a new design concept of non-uniform flexural members. With outstanding mechanical properties of UHPC which can develop the compressive strength up to 200MPa, the tensile strengths up to 8~20MPa and the tensile strain up to 1~5%, a non-uniform structural shape of UHPC flexural beams were optimally designed using three-dimensional finite element analysis. The experiments were carried out and compared with the design strength in order to verify the performance of them. Proposed non-uniform UHPC beams were evaluated by a series of three-point beam loading test as well as estimated by design bending and shear strength of members. The newly designed UHPC beams show excellent performances not only in transverse load capacities but also in deformation capacities.

Seismic Behavior of High-rise Steel Moment-resisting Frames with Vertical Mass Irregularity (수직질량 비정형이 존재하는 고층 강 모멘트-저항골조의 지진 거동)

  • Park, Byong-Jeong;Song, In-Hawn
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • Dynamic analyses were carried out to study the seismic response of high-rise steel moment-resisting frames in sixteen story buildings. The frames are intentionally designed by three different design procedures; strength controlled design. strong column-weak beam controlled design. and drift controlled design. The seismic performances of the so-designed frames with vertical mass irregularities were discussed in view of drift ratio. plastic hinge rotation, hysteretic energy input and stress demand. A demand curve of hysteretic energy inputs was also presented with two earthquake levels in peak ground accelerations for a future design application.

Concept-based Translation System in the Korean Spoken Language Translation System (한국어 대화체 음성언어 번역시스템에서의 개념기반 번역시스템)

  • Choi, Un-Cheon;Han, Nam-Yong;Kim, Jae-Hoon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.4 no.8
    • /
    • pp.2025-2037
    • /
    • 1997
  • The concept-based translation system, which is a part of the Korean spoken language translation system, translates spoken utterances from Korean speech recognizer into one of English, Japanese and Korean in a travel planning task. Our system regulates semantic rather than the syntactic category in order to process the spontaneous speech which tends to be regarded as the one ungrammatical and subject to recognition errors. Utterances are parsed into concept structures, and the generation module produces the sentence of the specified target language. We have developed a token-separator using base-words and an automobile grammar corrector for Korean processing. We have also developed postprocessors for each target language in order to improve the readability of the generation results.

  • PDF

Non-linear Finite Element Analysis and Performance Evaluations of Frames Strengthened by Non-uniform Concrete Brace Facade (비정형 콘크리트 가새 파사드 보강 골조의 비선형 유한요소 해석 및 성능평가)

  • Lee, Sun-Ju;Kim, Hyo-Ju;Cho, Chang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.73-80
    • /
    • 2024
  • Non-uniform reinforced concrete brace facade systems are newly considered to improve seismic performance of reinforced concrete frame buildings under lateral load. For normal and high strength concrete of 30MPa, 80MPa, and 120MPa, the cross-sections of reinforced concrete brace facade systems were designed as different size with same amount of reinforcements. The strengthened frame systems were analyzed by a non-linear two-dimensional finite element technique which was considering material non-linearities of concrete and reinforcing bars under monotonic and cyclic loadings. From the study of non-linear analysis of the systems, therefore, it was provided that the proposed braced facade systems were reliable to improve laterally load-carrying capacity and minimize damages of concrete members through comparisons of load-displacement curves, crack patterns, and stress distributions of reinforcing bars predicted by current non-linear finite element analysis of frame specimens.

Displacement Response Analysis of Twisted Irregular Buildings According to TMD (TMD 적용에 따른 Twisted 비정형 건축물의 변위 응답 분석)

  • Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.24 no.1
    • /
    • pp.89-98
    • /
    • 2024
  • In this study, we investigated the dynamic characteristics of three irregular building models to analyze the effectiveness of displacement response control with Tuned Mass Damper (TMD) installation in twisted irregular buildings. The three irregular models were developed with a fixed angle of twist per story at one degree, subjected to three historical seismic loads and resonant harmonic loads. By designing TMDs with linear and dashpot attributes, we varied the total mass ratio of the installed TMDs from 0.00625% to 1.0%, encompassing a total of 10 values. Two TMDs were installed at the center of the top story of the analysis model in both X and Y directions to evaluate displacement response control performance based on TMD installation. Our findings suggest that the top displacement response control performance was most effective when a 1.0% TMD was installed at the top layer of the analysis model.

Modal Combination Method for Prediction of Story Earthquake Load Profiles (층지진하중분포 예측을 위한 모드조합법)

  • Eom, Tae-Sung;Lee, Hye-Lin;Park, Hong-Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.65-75
    • /
    • 2006
  • Nonlinear pushover analysis is used to evaluate the earthquake response of building structures. To accurately predict the inelastic response of a structure, the prescribed story load profile should be able to describe the earthquake force profile which actually occurs during the time-history response of the structure. In the present study, a new modal combination method was developed to predict the earthquake load profiles of building structures. In the proposed method, multiple story load profiles are predicted by combining the modal spectrum responses multiplied by the modal combination factors. Parametric studies were performed far moment-resisting frames and walls. Based on the results. the modal combination factors were determined according to the hierarchy of each mode affecting the dynamic responses of structures. The proposed modal combination method was applied to prototype buildings with and without vertical irregularity. The results showed that the proposed method predicts the actual story load profiles which occur during the time-history responses of the structures.