• Title/Summary/Keyword: 비정상행위기반탐지

Search Result 78, Processing Time 0.024 seconds

An Intrusion Detection System Using Privilege Change Event Modeling based on Hidden Markov Model (권한 이동 이벤트를 이용한 은닉 마르코프 모델 기반 침입탐지 시스템)

  • 박혁장;장유석;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04a
    • /
    • pp.769-771
    • /
    • 2001
  • 침입의 궁극적 목표는 루트 권한의 획득이라고 할 수 있는데 최근 유행하고 있는 버퍼플로우(Buffer Over flow)등이 대표적이다. 최근 날로 다양화되는 이런 침입방법들에 대응하기 위해 비정상행위 탐지기법 연구가 활발한데 대표적인 방법으로는 통계적 기법과 전문가시스템, 신경망 등을 들 수 있다. 본 논문에서 제안하는 침입탐지시스템은 권한 이동 관련 이벤트의 추출 기법을 이용하여 Solaris BSM 감사 기록에서 추출된 정보 이벤트들을 수집한 후 은닉 마르코프 모델(HMM)로 모델링하여 정상행위 모델들을 만든다. 추론 및 판정시에는 이미 만들어진 정상행위 모델을 사용하여 새로 입력된 사용자들의 시퀀스를 비교 평가하고, 이를 바탕으로 정상 권한이동과 침입시의 권한이동의 차이를 비교하여 침입여부를 판정한다. 실험결과 HMM만을 사용한 기존 시스템에 비해 유용함을 알 수 있었다.

  • PDF

A Big Data Application for Anomaly Detection in VANETs (VANETs에서 비정상 행위 탐지를 위한 빅 데이터 응용)

  • Kim, Sik;Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.175-181
    • /
    • 2014
  • With rapid growth of the wireless mobile computing network technologies, various mobile ad hoc network applications converged with other related technologies are rapidly disseminated nowadays. Vehicular Ad Hoc Networks are self-organizing mobile ad hoc networks that typically have moving vehicle nodes with high speeds and maintaining its topology very short with unstable communication links. Therefore, VANETs are very vulnerable for the malicious noise of sensors and anomalies of the nodes in the network system. In this paper, we propose an anomaly detection method by using big data techniques that efficiently identify malicious behaviors or noises of sensors and anomalies of vehicle node activities in these VANETs, and the performance of the proposed scheme is evaluated by a simulation study in terms of anomaly detection rate and false alarm rate for the threshold ${\epsilon}$.

The Software Design Principles to Improve Performance in Network-based Intrusion Detection Systems (네트워크 기반 침입탐지시스템 성능향상을 위한 소프트웨어 설계 원리)

  • 박종운;최홍민;은유진;김동규
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2003.12a
    • /
    • pp.53-59
    • /
    • 2003
  • 정보통신 인프라의 발달과 인터넷을 통한 멀티미디어 서비스 및 대용량 데이터의 처리 증가는 조직의 네트워크 환경의 고속화를 가져왔다. 이러한 네트워크 환경의 변화는 조직으로 유입되는 비정상적인 행위/사건을 감시하는 네트워크 기반 침입탐지시스템(Network-based intrusion detection system, NIDS)의 필요조건의 변화를 동반한다. 즉, 기존 NIDS 연구는 비정상적인 행위/사건의 정확한 판단과 이에 대한 대응기술에 초점이 맞추어졌으나, 최근에는 이와 더불어 고속 네트워크 환경에서의 NIDS 성능저하를 최소화하기 위한 가용성 화보 기술에 대해 연구가 활발히 진행되고 있다. 따라서 본 논문에서는 고속 네트워크 환경에서 NIDS의 정상적인 운영을 위해 성능에 절대적인 영향을 미치는 요소를 결정하고, 각 요소별 효율적인 설계 원리를 제시한다.

  • PDF

Detecting Network Port Scanning Using Markov Chain Model (마르코프 체인 모델을 이용한 네트워크 포트 스캐닝의 탐지)

  • 한상준;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.305-307
    • /
    • 2003
  • 일반적으로 해킹이 이루어지기 위해서는 공격의 대상이 되는 시스템과 네트워크의 정보를 수집하는 사전단계가 필수적이다. 네트워크 포트 스캐닝은 이 시스템 정보 수집단계에서 중요한 역할을 하는 방법으로 주로 통신 프로토콜의 취약점을 이용하여 비정상적인 패킷을 보낸 후 시스템의 반응을 살피는 방법으로 수행된다. 본 논문에서는 마르코프 체인 모델을 이용한 비정상행위기법 기반의 포트 스캐닝을 탐지방법을 제안하고 여러 가지 은닉/비은닉 포트 스캐닝 방법에 대하여 좋은 성능을 나타냄을 보인다.

  • PDF

Threat Management System for Anomaly Intrusion Detection in Internet Environment (인터넷 환경에서의 비정상행위 공격 탐지를 위한 위협관리 시스템)

  • Kim, Hyo-Nam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.5 s.43
    • /
    • pp.157-164
    • /
    • 2006
  • The Recently, most of Internet attacks are zero-day types of the unknown attacks by Malware. Using already known Misuse Detection Technology is hard to cope with these attacks. Also, the existing information security technology reached the limits because of various attack's patterns over the Internet, as web based service became more affordable, web service exposed to the internet becomes main target of attack. This paper classifies the traffic type over the internet and suggests the Threat Management System(TMS) including the anomaly intrusion detection technologies which can detect and analyze the anomaly sign for each traffic type.

  • PDF

Real-time Abnormal Behavior Detection System based on Fast Data (패스트 데이터 기반 실시간 비정상 행위 탐지 시스템)

  • Lee, Myungcheol;Moon, Daesung;Kim, Ikkyun
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.25 no.5
    • /
    • pp.1027-1041
    • /
    • 2015
  • Recently, there are rapidly increasing cases of APT (Advanced Persistent Threat) attacks such as Verizon(2010), Nonghyup(2011), SK Communications(2011), and 3.20 Cyber Terror(2013), which cause leak of confidential information and tremendous damage to valuable assets without being noticed. Several anomaly detection technologies were studied to defend the APT attacks, mostly focusing on detection of obvious anomalies based on known malicious codes' signature. However, they are limited in detecting APT attacks and suffering from high false-negative detection accuracy because APT attacks consistently use zero-day vulnerabilities and have long latent period. Detecting APT attacks requires long-term analysis of data from a diverse set of sources collected over the long time, real-time analysis of the ingested data, and correlation analysis of individual attacks. However, traditional security systems lack sophisticated analytic capabilities, compute power, and agility. In this paper, we propose a Fast Data based real-time abnormal behavior detection system to overcome the traditional systems' real-time processing and analysis limitation.

Design and Evaluation of a Weighted Intrusion Detection Method for VANETs (VANETs을 위한 가중치 기반 침입탐지 방법의 설계 및 평가)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • With the rapid proliferation of wireless networks and mobile computing applications, the landscape of the network security has greatly changed recently. Especially, Vehicular Ad Hoc Networks maintaining network topology with vehicle nodes of high mobility are self-organizing Peer-to-Peer networks that typically have short-lasting and unstable communication links. VANETs are formed with neither fixed infrastructure, centralized administration, nor dedicated routing equipment, and vehicle nodes are moving, joining and leaving the network with very high speed over time. So, VANET-security is very vulnerable for the intrusion of malicious and misbehaving nodes in the network, since VANETs are mostly open networks, allowing everyone connection without centralized control. In this paper, we propose a weighted intrusion detection method using rough set that can identify malicious behavior of vehicle node's activity and detect intrusions efficiently in VANETs. The performance of the proposed scheme is evaluated by a simulation study in terms of intrusion detection rate and false alarm rate for the threshold of deviation number ${\epsilon}$.

Performance Evaluation of One Class Classification to detect anomalies of NIDS (NIDS의 비정상 행위 탐지를 위한 단일 클래스 분류성능 평가)

  • Seo, Jae-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.15-21
    • /
    • 2018
  • In this study, we try to detect anomalies on the network intrusion detection system by learning only one class. We use KDD CUP 1999 dataset, an intrusion detection dataset, which is used to evaluate classification performance. One class classification is one of unsupervised learning methods that classifies attack class by learning only normal class. When using unsupervised learning, it difficult to achieve relatively high classification efficiency because it does not use negative instances for learning. However, unsupervised learning has the advantage for classifying unlabeled data. In this study, we use one class classifiers based on support vector machines and density estimation to detect new unknown attacks. The test using the classifier based on density estimation has shown relatively better performance and has a detection rate of about 96% while maintaining a low FPR for the new attacks.

The Development of HTTP Get Flooding Detection System Using NetFPGA (NetFPGA를 이용한 HTTP Get Flooding 탐지 시스템 개발)

  • Hwang, Yu-Dong;Yoo, Seung-Yeop;Park, Dong-Gue
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.971-974
    • /
    • 2011
  • 본 논문에서는 대용량 네트워크에 비정상적인 트래픽이 유입이 되거나 나가는 경우 패킷 기반의 비정상 트래픽의 탐지와 분석이 가능토록 하는 시스템을 설계하고 구현하였다. 본 논문에서 구현한 시스템은 네트워크상의 이상 행위를 탐지하기 위하여, DDoS HTTP Get Flooding 공격 탐지 알고리즘을 적용하고, NetFPGA를 이용하여 라우터 단에서 패킷을 모니터링하며 공격을 탐지한다. 본 논문에서 구현한 시스템은 Incomplete Get 공격 타입의 Slowloris 봇과, Attack Type-2 공격 타입의 BlackEnergy, Netbot Vip5.4 봇에 높은 탐지율을 보였다.

A Design of Time-based Anomaly Intrusion Detection Model (시간 기반의 비정상 행위 침입탐지 모델 설계)

  • Shin, Mi-Yea;Jeong, Yoon-Su;Lee, Sang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1066-1072
    • /
    • 2011
  • In the method to analyze the relationship in the system call orders, the normal system call orders are divided into a certain size of system call orders to generates gene and use them as the detectors. In the method to consider the system call parameters, the mean and standard deviation of the parameter lengths are used as the detectors. The attack of which system call order is normal but the parameter values are changed, such as the format string attack, cannot be detected by the method that considers only the system call orders, whereas the model that considers only the system call parameters has the drawback of high positive defect rate because of the information obtained from the interval where the attack has not been initiated, since the parameters are considered individually. To solve these problems, it is necessary to develop a more efficient learning and detecting method that groups the continuous system call orders and parameters as the approach that considers various characteristics of system call related to attacking simultaneously. In this article, we detected the anomaly of the system call orders and parameters by applying the temporal concept to the system call orders and parameters in order to improve the rate of positive defect, that is, the misjudgment of anomaly as normality. The result of the experiment where the DARPA data set was employed showed that the proposed method improved the positive defect rate by 13% in the system call order model where time was considered in comparison with that of the model where time was not considered.