• 제목/요약/키워드: 비정보 사전분포

검색결과 66건 처리시간 0.025초

변량모형 자료에서의 베이지안 이상점검출 (A Bayesian Outlier Detection in Random Effects Model)

  • 정윤식;이상진
    • 응용통계연구
    • /
    • 제13권1호
    • /
    • pp.115-131
    • /
    • 2000
  • 이 논문에서는 평균-이동모형(mean-shift model)을 이상점을 위한 대립모형으로 사용하여 변량모형(random effect model)에서의 이상점 검출을 위한 베이즈인자(Bayes factor)를 제시한다. 그러나 가능한 사전 정보가 없어서 무정보사전분포(noninformative prior distribution)가 사용되어야만 할 때, 대부분의 무정보사전분포는 부적절분포(improper distribution)이기 때문에 베이즌 인자에는 사전분포로부터 나온 미지의 상수가 포함되어 잇다. 이 문제를 해결하기 위해 이 논문에서는 Berger와 Pericchi (1996)가 제시한 내재베이즈인자(the intrinsic Bayes factor;IBF)를 사용한다. 또한 이 베이즈인자를 계산상 어려움을 해결하기 위해 Verdinellidh Wasserman(1995)의 일반화 세비디지키 밀도비를 이용하여 수정하고 이것을 이용하여 이상점을 검출하는 방법을 제시한다. 마지막으로 인위적으로 이상점을 포함하고 있는 데이터를 만들고 제시된 방법으로 가상실험을 하고 또한 실제 데이터에서 제시한 방법으로 이상점을 찾아보았다.

  • PDF

Noninformative Priors for the Ratio of Means of Two Poisson Distributions

  • 강상실;이우동;김달호
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.201-207
    • /
    • 2002
  • In this paper, Jeffrey's and reference priors are derived when the parameter of interest is the ratio of means of two in dependent Poisson distribution. To achieve the parameter orthogonality in the sense of Cox and Reid (1987), non-trivial orthogonal transformation is provided. The orthogonal transformation makes to find noninformative priors easy. Our simulation study indicates that the reference prior meet very well the target coverage probabilities in a frequentist sense. Using the real data, we compute Bayes estimator and MLE for the ratio of means based on the reference prior.

  • PDF

Bayesian 추계학적 신뢰도 기법을 이용한 소양강댐 퇴사용량 감소의 불확실성 분석 (Identification of Uncertainty on the Reduction of Dead Storage in Soyang Dam Using Bayesian Stochastic Reliability Analysis)

  • 이철응;김상욱
    • 한국수자원학회논문집
    • /
    • 제46권3호
    • /
    • pp.315-326
    • /
    • 2013
  • 저수지 내 퇴적과정으로 의한 저수용량 감소에 대한 효율적 관리의 중요성에도 불구하고, 불확실성을 포함하는 확률론적 관점의 신뢰도 분석이론을 활용한 저수용량 감소에 관한 연구는 많지 않다. 본 연구에서는 신뢰도 분석모형의 하나인 추계학적 감마 과정(stochastic gamma process)을 이용하고 개발된 모형을 소양강댐에서 적용하여 향후 발생될 수 있는 저수용량의 감소를 불확실성 측면에서 분석하였다. 특히 불확실성을 분석하기 위하여 정보적 사전분포(informative prior distribution)를 이용한 Bayesian MCMC 기법을 사용하여 추계학적 감마 과정의 모수(parameter)를 추정하였다. 구축된 정보적 사전분포를 적용한 결과사전분포의 불확실성에 비해 사후분포의 불확실성이 상당히 감소되어져 정보적 사전분포의 효과를 확인할 수 있었으며, 소양강댐 퇴사용량의 기대수명은(expected life time)은 5%유의수준에서 119.3년부터 183.5년의 불확실성을 나타내는 것으로 분석되었다. 이와 같은 연구는 저수용량의 감소에 관한 불확실성 측면의 정보를 신뢰도 분석결과와 함께 제공할 수 있으므로, 향후 퇴적과정으로 인한 저수지의 유지관리계획을 수립함에 있어 댐관리자 등에게 효과적으로 활용될 수 있을 것으로 판단된다.

로그정규모집단에서의 베이지안 모형선택

  • 이우동
    • 한국산업정보학회:학술대회논문집
    • /
    • 한국산업정보학회 1998년도 공동추계학술대회 경제위기 극복을 위한 정보기술의 효율적 활용
    • /
    • pp.807-813
    • /
    • 1998
  • 이 논문에서는 로그정규분포에 대한 베이지안 모형선택방법을 제안한다. 일반적으로 , 모수에 대한 사전정보가 비정보적(noninformative)인 경우, 베이즈 요인(Bayes factor)은 결정할 수 없는 상수를 포함하는 것이 일반적이다. 이 경우, 베이즈 요인을 계산하기 위해 최근 활발히 연구중인 고유 베이즈 요인(Intrinsic Bayes factor)방법을 이용한다. 실제의 자료를 통해 로그정규분포의 적합도 검정에 대한 부분적 베이즈 요인을 계산한다.

베이지안 방식에 의한 지구물리 역산 문제의 접근 (A Bayesian Approach to Geophysical Inverse Problems)

  • 오석훈;정승환;권병두;이희순;정호준;이덕기
    • 지구물리와물리탐사
    • /
    • 제5권4호
    • /
    • pp.262-271
    • /
    • 2002
  • 본 연구에서는 지구물리 자료의 베이지안 역산을 효과적으로 수행하는 방법에 관해 논의하였다. 베이지안 처리에서 가장 문제가 되는 사전확률분포를 구하기 위해 지구통계학적 방법을 적용하였으며, 사후확률분포의 추정을 위해 MCMC(Markov Chain Monte Carlo) 방법을 적용하였다. 쌍극자배열 전기비저항 탐사 자료의 2차원 역산을 위해 슐럼버저배열 전기비저항탐사 자료와 시추공 자료를 사전 정보로 이용하였으며, 이들 사전정보에 대해 지구통계학적 방법을 적용하여 사전확률분포를 작성하였다. 쌍극자배열 전기비저항 탐사 자료를 최대 우도함수로 하는 사후확률분포는 차원이 매우 높은 적분을 요구하므로, 이를 추정하기 위해 MCMC기술을 적용하였으며, 보다 효율적인 접근을 위해 Gibbs샘플링 방법을 이용하였다. 그 결과 비모수적 방식으로 사후확률분포를 분석함으로써 보다 신뢰성 있는 해를 구할 수 있었으며, 주변화(marginalization)된 사후확률분포를 이용하여 다양한 분석을 적용할 수 있었다.

NHPP소프트웨어 신뢰도 성장모형에서 베이지안 모수추정과 예측 (Bayesian parameter estimation and prediction in NHPP software reliability growth model)

  • 장인홍;정덕환;이승우;송광윤
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.755-762
    • /
    • 2013
  • 본 논문은 NHPP 소프트웨어 신뢰성모형에서 모수추정과 고장시간에 대한 예측을 다루고자 한다. 소프트웨어 신뢰성모형 Goel-Okumoto모형에서 평균값 함수에 대한 최우추정과 경험적 사전분포를 가정한 공액사전분포에서 베이지안 추정을 다루었다. 실제 자료에서 두 가지 추정법에 의한 모수 추정값을 제공하였으며, 모형의 적합성을 판정하고, 고장수에 대한 예측값을 비교하였다.

변종 몬테 칼로 신경망을 이용한 패턴 분류 (Pattern Classification Using Hybrid Monte Carlo Neural Networks)

  • 전성해;최성용;오임걸;이상호;전홍석
    • 정보처리학회논문지B
    • /
    • 제8B권3호
    • /
    • pp.231-236
    • /
    • 2001
  • 일반적인 다층 신경망에서 가중치의 갱신 알고리즘으로 사용하는 오류 역전과 방식은 가중치 갱신 결과를 고정된(fixed) 한 개의 값으로 결정한다. 이는 여러 갱신의 가능성을 오직 한 개의 값으로 고정하기 때문에 다양한 가능성들을 모두 수용하지 못하는 면이 있다. 하지만 모든 가능성을 확률적 분포로 표현하는 갱신 알고리즘을 도입하면 이런 문제는 해결된다. 이러한 알고리즘을 사용한 베이지안 신경망 모형(Bayesian Neural Networks Models)은 주어진 입력값(Input)에 대해 블랙 박스(Black-Box)와같은 신경망 구조의 각 층(Layer)을 거친 출력값(Out put)을 계산한다. 이 때 주어진 입력 데이터에 대한 결과의 예측값은 사후분포(posterior distribution)의 기댓값(mean)에 의해 계산할 수 있다. 주어진 사전분포(prior distribution)와 학습데이터에 의한 우도함수(likelihood functions)에 의해 계산한 사후확률의 함수는 매우 복잡한 구조를 가짐으로 기댓값의 적분계산에 대한 어려움이 발생한다. 따라서 수치해석적인 방법보다는 확률적 추정에 의한 근사 방법인 몬테 칼로 시뮬레이션을 이용할 수 있다. 이러한 방법으로서 Hybrid Monte Carlo 알고리즘은 좋은 결과를 제공하여준다(Neal 1996). 본 논문에서는 Hybrid Monte Carlo 알고리즘을 적용한 신경망이 기존의 CHAID, CART 그리고 QUEST와 같은 여러 가지 분류 알고리즘에 비해서 우수한 결과를 제공하는 것을 나타내고 있다.

  • PDF

마스크 데이터를 이용한 베이지안 추정 (Bayesian Estimation of System & Component Reliability Using Masked Data)

  • 김종걸;박창규
    • 한국신뢰성학회:학술대회논문집
    • /
    • 한국신뢰성학회 2000년도 추계학술대회
    • /
    • pp.353-362
    • /
    • 2000
  • 다양한 컴포넌트들로 구성된 시스템의 수명 데이터는 시스템 컴포넌트들의 신뢰성을 추정하는데 많이 사용된다. 하지만 비용이나 고장진단의 기술적 문제 때문에 시스템 고장의 정확한 원인을 밝혀내기는 어렵다. 시스템이나 컴포넌트의 수명 데이터 중 정확한 고장원인을 알 수 없는 데이터를 마스크 데이터라 한다. 본 연구는 마스크데이터와 베이지안 추정의 연구방향을 살펴보고, 그리고 고장률의 비정보 사전분포를 이용하여, 컴포넌트가 직렬로 구성된 시스템의 수명 데이터가 마스크 데이터를 갖는 지수분포의 시스템 컴포넌트 고장률을 추정한다.

  • PDF

마스크 데이타를 이용한 신뢰성 분석의 연구방향 (The future Research based on Reliability Analysis Using Masked Data)

  • 김종걸;박창규
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2000년도 추계학술발표논문집
    • /
    • pp.53-62
    • /
    • 2000
  • 다양한 컴포넌트들로 구성된 시스템의 수명 데이터는 시스템 컴포넌트들의 신뢰성을 추정하는데 많이 사용된다. 하지만 비용이나 고장진단의 기술적 문제 때문에 시스템 고장의 정확한 원인을 밝혀내기는 어렵다. 시스템이나 컴포넌트의 수명 데이터 중 정확한 고장원인을 알 수 없는 데이터를 마스크 데이터라 한다. 본 연구는 마스크데이터와 베이지안 추정의 연구방향을 살펴보고, 그리고 고장률의 비정보 사전분포를 이용하여, 컴포넌트가 직렬로 구성된 시스템의 수명 데이터가 마스크 데이터를 갖는 지수분포의 시스템 컴포넌트 고장률을 추정 한다.

  • PDF

굴곡가지의 높임법 ( 존대법 ) 최소형 형성론 (AN ANALYSIS OF HONORIFIC MINIMAM FORMS IN KOREAN)

  • 김석득
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 1989년도 한글날기념 학술대회 발표논문집
    • /
    • pp.77-80
    • /
    • 1989
  • 높임법의 최소형 정립은 말본범주의 인지뿐만 아니라, 사전의 어휘항복 설정에 절대적 중요성을 갖는다. 굴곡가지의 높임법 낱덩이, 곧 최소형 인지의 요건은 첫째, 분포상 굴곡가지가 줄기에 직접 통합되어야 한다는 것이며, 둘째, 줄기에 직접 통합되는 요소가 높임법의 의미를 가져야 한다는 것이다. 단순형태소가 줄기에 직접 통합하여 존대의 의미를 가지는 것은 홑최소형이 되고, 다른 것과 의무적으로 통합하여 줄기에 직접 통합되는 것은 겹최소형이다. 의무적인 겹최소형이 다시 독립적으로 설 수 있는 비의무적 요소와 통합하여 새로운 존대의 의미를 생성한다면, 이 또한 겹최소형이 된다. 높임의 최소형은 높임법과 의항법의 이차원의 성격을 띤다. 따라서 높임의 최소형의 전 분포는 높임의 등분과 함께, 의향법 체계에 걸쳐 있다. 최소형은 풀이씨의 종류에 따라 다름도 주의할 일이다. 시상법은 높임법의 구성소일 뿐이며, 또한 그 자체 독립하는 것으로 높임법과 의향법과는 그 차원을 달리한다.

  • PDF