• Title/Summary/Keyword: 비원형 단면

Search Result 141, Processing Time 0.023 seconds

A Study on Consolidation Characteristic of Dredged Fill Using Geotechnical Centrifuge (원심모형시험에 의한 준설지반의 압밀특성연구)

  • Kim, Hee-Chul;Kim, Heung-Seok;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.10
    • /
    • pp.45-55
    • /
    • 2008
  • In this study, the in-situ model test has been conducted to estimate and analyze consolidation behavior of the ground by using the miniature test that reconstructs economically geotechnical behavior of in-situ full scale structure. To analyze the relation of effective stress, void ratio and coefficient of permeability at the self-weight consolidation stage, the low stress seepage consolidation test has been conducted and the involution function of constitutive equation had been obtained from the result of the curve fitted seepage consolidation test. As a result of the numerical analysis that had been conducted on the representative section using a constitute equation, final settlement was similar to those of self-weight consolidation of the centrifugal model test. But it was more or less smaller. It seems that these trends are caused by the difference between estimated values.

Numerical Analysis of Vortex Induced Vibration of Circular Cylinder in Lock-in Regime (Lock-in 영역에서 원형실린더의 와류유기진동 전산해석)

  • Lee, Sungsu;Hwang, Kyu-Kwan;Son, Hyun-A;Jung, Dong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.1
    • /
    • pp.9-18
    • /
    • 2016
  • The slender structures such as high rise building or marine riser are highly susceptible to dynamic force exerted by fluid-structure interactions among which vortex-induced vibration(VIV) is the main cause of dynamic unstability of the structural system. If VIV occurs in natural frequency regime of the structure, fatigue failure likely happens by so-called lock-in phenomenon. This study presents the numerical analysis of dynamic behavior of both structure and fluid in the lock-in regimes and investigates the subjacent phenomena to hold the resonance frequency in spite of the change of flow condition. Unsteady and laminar flow was considered for a two-dimensional circular cylinder which was assumed to move freely in 1 degree of freedom in the direction orthogonal to the uniform inflow. Fluid-structure interaction was implemented by solving both unsteady flow and dynamic motion of the structure sequentially in each time step where the fluid domain was remeshed considering the movement of the body. The results show reasonable agreements with previous studies and reveal characteristic features of the lock-in phenomena. Not only the lift force but also drag force are drastically increasing during the lock-in regime, the vertical displacement of the cylinder reaches up to 20% of the diameter of the cylinder. The correlation analysis between lift and vertical displacement clearly show the dramatic change of the phase difference from in-phase to out-of-phase when the cylinder experiences lock-in. From the results, it can be postulated that the change of phase difference and flow condition is responsible for the resonating behavior of the structure during lock-in.

Analysis of Lower Somatotype on Adult Women and Appearance Analysis of Flare Skirts by using the Image Processing (성인 여성의 하반신 체형분석과 염상처리를 이용한 플레어 스커트의 외관분석)

  • Lee, Soo-Jung;Hong, Jeong-Min
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.252-258
    • /
    • 1999
  • The aims of this study is to classify the lower somatotype of adult women and appearance analysis on the shape of flare skirts by using the image processing. Also We have made skirts in order to analyze the various types of appearance of flare skirts by using the image processing. The subjects for our wear test lower somatotype, who were controlled in their waist, abdomen and hip shapes. The flare skirts used for wear test were 112 types(combinated 14 fabric type and 8 lower somatotype). The effect of lower somatotype on the shape of flare skirts was determined by the horizontally hem line section shape and the silhouette of flare skirts with image processing. The data were analyzed by using analysis of variance and Turkey, Duncan multiple range test. The results obtained are summarized as follows: It is shown that the fabric weight elongation differs in fabrics properties, in direction of textures. The shape horizontal section of flare skirt hem line has differed with the number of nodes, wave-height of nodes and breadth of silhouette by fabrics properties and lower somatotype. It is noticed that the breadth of flare skirts by the silhouette has high correlation with the drape ability of fabrics and lower somatotype. Results for our flare skirts show changes in amplitude and mean with fabrics, somatotype. Therefore we can say that gray-level histograms are correlated with changes in appearance, differences in drape spacing and related fabric properties and their somatotype.

  • PDF

Development of the Structure for Enhancing Capillary Force of the Thin Flat Heat Pipe Based on Extrusion Fabrication (압출형 박판 히트파이프의 모세관력 향상을 위한 구조 개발)

  • Moon, Seok Hwan;Park, Yoon Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.11
    • /
    • pp.755-759
    • /
    • 2016
  • The use of heat pipes in the electronic telecommunication field is increasing. Among the various types of heat pipes, the thin flat heat pipe has relatively high applicability compared with the circular heat pipe in the electronic packaging application. The thin flat heat pipe based on extrusion fabrication has a simple capillary wick structure consisting of rectangular cross sectional grooves on the inner wall of the pipe. Although the groove serves as a simple capillary wick, and many such grooves are provided on the inner wall, it is difficult for the grooves to realize a sufficiently high capillary force. In the present study, a thin flat heat pipe with a wire bundle was developed to overcome the drawback of poor capillary force in the thin flat heat pipe with grooves, and was evaluated by conducting tests. In the performance test, the thin flat heat pipe with the wire bundle showed a lower thermal resistance of approximately 3.4 times, and a higher heat transfer rate of approximately 3.8 times with respect to the thin flat heat pipe with grooves as the capillary wick respectively. The possibility of using the wire bundle as a capillary wick in the heat pipe was validated in the present study; further study for commercializing this concept will be taken up in the future.

Characteristics of Expression according to Iron Oxide Content in Ceramic Glaze (도자기 유약 내 철산화물 함량에 따른 흑유 발현 특성)

  • Choi, Jae Won;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.36 no.5
    • /
    • pp.393-404
    • /
    • 2020
  • We observed changes in the properties of the glaze layer according to the content of iron oxide and inferred the composition, content, and environment of the materials used in the past during the production process of black ware. First, experiments were conducted using different ratios of iron oxide, feldspar, calcite, and ash at different temperatures and firing environments; the characteristics of glaze were classified into five groups in the oxidation environment. Different properties were identified in the reducing environment above 1200℃. The crystal identified in the experiment was similar to the glaze characteristics in the excavated black ware. The crystal phase appeared in four groups: band shape, circular, arborescent phase, and needle crystal, depending on the change in the content of iron oxide. However, the difference in crystals did not appear significantly at high temperatures. In addition, crystals of glaze were divided into two groups depending on the component ratio. The presence or absence of feldspar is thought to affect crystallinity and amorphous iron oxide and the changes in the glaze layer changed substantially depending on the amount of iron oxide. In particular, it was confirmed that the aspects of iron oxide in the oxidation and reduction environments were different and, therefore, crystallization due to the firing environment also affected the optical characteristics.

Evaluation of In-plane Buckling and Ultimate Strength for Braced Arch Ribs (브레이스트 아치 리브의 면내 좌굴 및 극한강도 평가)

  • Park, Yong Myung;Heo, Taek Young;Lee, Pil Goo;Noh, Kyeung Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.759-768
    • /
    • 2004
  • The parametric analysis of vertically braced steel pipe arch ribs was performed to evaluate their in-plane buckling strengths and ultimate load-carrying capacities. The elastic and plastic behavior of braced arch ribs, unlike those of the usual single arch ribs, are affected by such factors as the flexural rigidity of the brace member, brace and pipe ribs spacing, loading situation, and arch curvature. To analyze these effects, several parameters were included, such as the rise-to-span ratio, the second moment of the inertia ratio of the rib to the brace member, the space ratio of the brace, the space ratio of the upper and lower ribs, the initial crookedness, the slenderness ratios of the braced arch ribs, and the loading conditions were considered with live-load-to-dead-load ratios. Based on the results of the parametric analyses, a proper profile of the braced arch rib was proposed. A large-scale structural experiment was also performed to evaluate the ultimate strength of the braced arch rib. The test results were determined to reasonably coincide with the analytical ones.

A Study on the Determination of Shock Loss Coefficient on the Branch in the Double-deck Road Tunnel for Small Car (소형차 전용 복층터널 분기부에서의 충격손실 계수 결정 연구)

  • Rho, Jang-hoon;Lee, Seung-jun;Kim, Jin
    • Tunnel and Underground Space
    • /
    • v.27 no.1
    • /
    • pp.50-57
    • /
    • 2017
  • In this study, the experiment for determining shock loss at the branch is conducted for the design of network double-deck road tunnel ventilation. The shock loss coefficient that determines the quantity of shock loss has been considered only regarding the constant aspect ratio of circular or rectangular section. However the suggestion of shock loss coefficient is needed since the aspect ratio of double-deck road tunnel for small vehicle is considered around 1:3 with the low height in Korea. The experiment model was made with the scale of around 1:23 applying Reynolds similarity law, so that the shock loss coefficient on the branch of the large aspect ratio was measured. The result of the study showed that shock loss coefficients of both split branch and straight branch were measured two to three times higher than those calculated from the theoretical equation or design values of previous studies. Therefore the study resulted the effect of large aspect ratio on shock loss coefficient was huge, and it is expected that precise design value can be suggested for the design of network double-deck tunnel ventilation.

Constitutive Model of Laterally Confined High Strength Concrete (횡구속된 고강도 콘크리트의 구성모델)

  • Yun, Sung-Hwan;Kang, Yoon-Sig;Park, Tae-Hyo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.481-488
    • /
    • 2010
  • Since existing constitutive models developed for confined normal strength concrete overestimate ductility when they are applied to confined high strength concrete, these models cannot be directly applied to confined high strength concrete. In an effort to solve this problem, an accurate stress-strain relationship of the hihg strength concrete needs to be formulated by examining the confinement effects due to increase of the concrete strength. In this study, a constitutive model is developed to express the stress-strain relationship of confined high strength concrete by carrying out regression analysis of the main parameters affection strength and ductile behavior of reinforced high strength concrete columns. Twenty-five test specimens were chosen from the reported experimental studies in the literature. The experimental results of stress-strain relationships of show a good agreement with results of the stress-strain relationships of suggested high strength concrete, covering a strength range between 60 and 124 MPa.

A Study on the Structural Reliability (구조물(構造物)의 신뢰성(信賴性)에 관한 소고(小考) -원형단면의 인장재를 중심으로-)

  • Son, Seung Yo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.51-57
    • /
    • 1985
  • In the design of civil engineering structures, the designers are invariably faced to the uncertainties and the randomness of the design parameters such as material properties and loads. Even when the structures are built, the actual geometries of the structures are also subject to their random variations from their nominal design values. Thus, the reliability of a structure in terms of these uncertainties and variations becomes a matter of great concern to the structural designers. This study employs the First Order Second Moment Method to evluate numerically the reliability of a simple tension member and discusses the influence on the final failure probability of that structure due to: 1) use of equivalent normal distribution in place of non-normal distribution, 2) linearization of non linear limit state equation. A discussion is also made on the necessity of fundamental studies on the distrubution characteristics of the strength of locally produced construction materials and those of the loads frequently encountered in the structural design.

  • PDF

Pull-out Behaviors of Headed Bars with Different Details of Head Plates (Head 플레이트 상세에 따른 Headed Bars의 인발거동에 관한 연구)

  • Park, Hyun-Gyoo;Yoon, Young-Soo;Ryoo, Young-Sup;Lee, Man-Seop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.2 no.2 s.5
    • /
    • pp.95-104
    • /
    • 2002
  • This paper presents the pull-out failure mode on Headed Bars and prediction of tensile capacity, as governed by concrete cone failure. 17 different plate types, three different concrete strengths and three different welding types of specimens were simulated. Test variables are the reinforcing bar diameters connected to headed plate (e.g., 16mm, 19mm and 22mm), the head plate shapes (e.g., circular, square, rectangular), the dimensions of head plates (e.g., area and thickness), the types of welding scheme for connection of reinforcing bars and head plates (e.g., general welding and friction welding). Headed Bars were manufactured in different areas, which shape and thickness are based on ASTM 970-98. Calculation of Embedment length in concrete is based on CSA 23.3-94, and static tensile load was applied. Pullout capacities tested were compared to the values determined using current design methods such as ACI-349 and CCD method. If compare experiment results and existings, Headed bar expressed high strength and bigger breakdown radious than standard by wide plate area and anomaly reinforcing rod unlike anchor.