• Title/Summary/Keyword: 비선형 k-모델

Search Result 1,170, Processing Time 0.028 seconds

Three-Dimensional Finite Element Analysis of Tieback Walls in Sand

  • Lim, Yu-Jin;Briaud, Jean-Louis
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.33-52
    • /
    • 1997
  • A three dimensional nonlinear finite element analysis is used to study the influence of various design decisions for tieback walls. The numerical model simulates the soldier piles and the tendon bonded length of the anchors with beam elements, the unbonded tendon with a spring element, the wood lagging with the shell elements, and the soil with solid 3D nonlinear elements. The soil model used is a modified hyperbolic model with unloading hysteresis. The complete sequence of construction is simulated including the excavation, and the placement and stressing of the anchors. The numerical model is calibrated against a full scale instrumented tieback wall at the National Geotechnical Experimentation Site (NGES) on the Riverside Campus of Texas A&M University. Then a parametric study is conducted. The results give information on the influence of the following factors on the wall behavior : location of the first anchor, length of the tendon unbonded zone, magnitude of the anchor forces, embedment of the soldier piles, stiffness of the wood lagging, and of the piles. The implications in design are discussed.

  • PDF

Adsorption Analysis of VOCs of Zeolite Synthesized by Coal Fly Ash in a Fixed-bed Adsorber (고정층 흡착탑에서 석탄비산재로부터 합성한 Zeolite의 VOCs 흡착 해석)

  • Kim, Seong-Soo;Lee, Chang-Han;Park, Sang-Wook
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.784-790
    • /
    • 2010
  • VOCs such as acetone, benzene, toluene, ethylbenzene were adsorbed in a fixed-bed adsorber using zeolite synthesized from coal fly ash and 4 kinds of activated carbon at 101.3 kPa. The adsorber was operated batchwise with the charge of 5 g adsorbent to obtain the breakthrough curve of VOCs. Experiments were carried out at $40^{\circ}C$, nitrogen flow rate of $70cm^3/min$ and sparger temperature of $30^{\circ}C$. The deactivation model was tested for these curves by combining the adsorption of VOCs and the deactivation of adsorbent particles. The observed values of the adsorption rate constant and the deactivation rate constant were evaluated through analysis of the experimental breakthrough data using a nonlinear least square technique. The experimental breakthrough data were fitted very well to the deactivation model than the adsorption isotherm models in the literature. Also, adsorption capacities of adsorbents were obtained from the breakthrough curve to observe the correlation between adsorption capacity and the physical properties of VOCs.

GEase-K: Linear and Nonlinear Autoencoder-based Recommender System with Side Information (GEase-K: 부가 정보를 활용한 선형 및 비선형 오토인코더 기반의 추천시스템)

  • Taebeom Lee;Seung-hak Lee;Min-jeong Ma;Yoonho Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.167-183
    • /
    • 2023
  • In the recent field of recommendation systems, various studies have been conducted to model sparse data effectively. Among these, GLocal-K(Global and Local Kernels for Recommender Systems) is a research endeavor combining global and local kernels to provide personalized recommendations by considering global data patterns and individual user characteristics. However, due to its utilization of kernel tricks, GLocal-K exhibits diminished performance on highly sparse data and struggles to offer recommendations for new users or items due to the absence of side information. In this paper, to address these limitations of GLocal-K, we propose the GEase-K (Global and EASE kernels for Recommender Systems) model, incorporating the EASE(Embarrassingly Shallow Autoencoders for Sparse Data) model and leveraging side information. Initially, we substitute EASE for the local kernel in GLocal-K to enhance recommendation performance on highly sparse data. EASE, functioning as a simple linear operational structure, is an autoencoder that performs highly on extremely sparse data through regularization and learning item similarity. Additionally, we utilize side information to alleviate the cold-start problem. We enhance the understanding of user-item similarities by employing a conditional autoencoder structure during the training process to incorporate side information. In conclusion, GEase-K demonstrates resilience in highly sparse data and cold-start situations by combining linear and nonlinear structures and utilizing side information. Experimental results show that GEase-K outperforms GLocal-K based on the RMSE and MAE metrics on the highly sparse GoodReads and ModCloth datasets. Furthermore, in cold-start experiments divided into four groups using the GoodReads and ModCloth datasets, GEase-K denotes superior performance compared to GLocal-K.

A Study of Lianis Model for Elastomeric Bushing in Axial Mode (일래스토메릭 부싱의 축방항모드에 대한 리아니스 모델연구)

  • Lee, Seong-Beom
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • An elastomeric bushing which has been considered in this research is a device used in automotive suspension systems to reduce the forte transmitted iron the wheel to the frame of the vehicle. A bushing is modeled at a hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. Lianis constitutive equation for a nonlinear viscoelastic incompressible material is used to model the elastomeric material of the bushing. It is used to derive a force-displacement relation for axial response of the bushing. The displacement dependent force relaxation function for the bushing is obtained from the ramp displacement control tests with an extrapolation method. This is compared with the exact result obtained from the step displacement control test and the results are in very good agreement.

2-D Axisymmetric Non-linear Finite Strain Consolidation Model Considering Self-weight Consolidation of Dredged Soil (준설매립지반의 자중압밀을 고려한 2차원 축대칭 비선형 유한변형 압밀 모델)

  • Kwak, Tae-Hoon;Lee, Dong-Seop;Lim, Jee-Hee;Stark, T.D.;Choi, Eun-Seok;Choi, Hang-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.8
    • /
    • pp.5-19
    • /
    • 2012
  • Vertical drains along with the preloading technique have been commonly used to enhance the consolidation rate of dredged placement formation. In practice, vertical drains are usually installed in the process of self-weight consolidation of a dredged soil deposit because this process takes considerable time to be completed, which makes conventional analytical or numerical models difficult to quantify the consolidation behavior. In this paper, we propose a governing partial differential equation and develop a numerical model for 2-D axisymmetric non-linear finite strain consolidation considering self-weight consolidation to predict the behavior of a vertical drain in the dredged placement foundation which is installed during the self-weight consolidation. In order to verify the developed model in this paper, results of the numerical analysis are compared with that of the lab-scaled self-weight consolidation test. In addition, the model verification has been carried out by comparing with the simplified method. The comparisons show that the developed model can properly simulate the consolidation of the dredged placement formation with the vertical drains installed during the self-weight consolidation. Finally, the effect of construction schedule of vertical drains and of pre-loading during the self-weight consolidation is examined by simulating an imaginary dredged material placement site with a thickness of 10 m and 20 m, respectively. This simulation infers the applicability of the proposed method in this research for designing a soil improvement in a soft dredged deposit when vertical drains and pre-loading are implemented before the self-weight consolidation ceases.

A Study on the Road Model for Image-based Road Visibility Measurements (이미지 기반 도로시정측정을 위한 도로모델에 관한 연구)

  • Kim, Bong-Keun;Lee, Gwang
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11a
    • /
    • pp.197-199
    • /
    • 2010
  • 우리는 CCTV 카메라 영상에서 도로상에 통행중인 차량의 이동영역이 시정에 따라 달라진다는 점에 착안하여 이동영역을 추출하고 이를 이용하여 가시거리를 계산하는 시정 측정 장치를 개발하고 있으며, 이 때 가장 중요한 것은 어떻게 추출된 이동영역을 이용하여 시정측정값을 계산할 것인가 하는 것이다. 이동영역이 추출된 이미지에서 이동영역의 상단라인을 나타내는 가시선의 위치와 시정거리와는 일반적으로 지수함수의 관계를 가지게 된다. 본 논문에서는 가시선의 위치를 이용한 시정측정을 위해 도로의 표면과 카메라의 기하학적인 관계를 설명하고 비선형 곡선적합 방법에 기초한 도로모델과 이를 이용한 도로시정 측정과 실제 적용방안을 제시하고 구현한 결과를 보인다.

  • PDF

Experimental Modeling of MR Damper for Cruise Bus (우등버스용 MR 댐퍼의 실험적 모델링)

  • Sohn, Jeong-Hyun;Jun, Chul-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.863-867
    • /
    • 2011
  • In this paper, we analyze the characteristic test results of an MR damper for a cruise bus, and we model the nonlinear hysteretic characteristics of the damper using arctangent and polynomial functions. We establish an experimental model of the MR damper according to the input current, and we set the model parameters using the MATLAB Optimization Toolbox. The model is verified via a computer simulation of a full-car model.

Stress Intensity Factors for a Crack in a Nonlinear Electrostrictive Material (비선형 전왜재료 내부의 균열에 대한 응력 확대계수)

  • Beom, Hyeon-Gyu;Jeong, Eun-Do
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.186-191
    • /
    • 2001
  • A crack with electrically impermeable surfaces in an electrostrictive material subjected to uniform electric loading is analysed. The effect of electric yielding on stress intensity factor is investigated by using a small scale yielding model and a strip yield zone model. Complete forms of electric fields and elastic fields are derived by using complex function theory. The electrical yield zone shapes for two models are different each other. The two models, however, predict similar yield zone sizes under the small scale yielding conditions. It is found that the influence of electric yielding on the stress intensity factor is insensitive to the modeling of the electrical yield zone shape.

  • PDF

A Study on Repetitive Tracking Control of a Coarse-Fine Actuator (조미동 구동기의 반복추종제어에 관한 연구)

  • Choi, Gi-Sang;Oh, Jong-Hyun;Choi, Gi-Heung
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.4
    • /
    • pp.38-46
    • /
    • 1999
  • This paper discusses the repetitive tracking control method for a coarse-fine actuator. The proposed system is composed of a magnetic linear drive as a coarse actuator and a piezoelectric linear positioner as a fine actuator. In particular, nonlinear friction in a magnetic linear drive and hysteresis characteristic of a piezoelectric linear positioner are modeled first. The feedback linearization loop uses these models in tracking position control. The control strategy is then further extended to include a repetitive control algorithm in tracking periodic reference inputs. This repetitive controller is implemented on the existing PID controller augmented with feedback linearization loop. The experimental results show that performance in tracking sinusoidal waveforms is noticeably improved by augmenting a PID controller with feedback linearization loop and a repetitive controller together.

  • PDF

Modeling and Calibration of Wrist Magnetic Sensor for Measuring Wrist Gesture (손목운동 측정을 위한 손목 자기장 센서의 모델링 및 캘리브레이션)

  • Yeo, Hee-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.26-32
    • /
    • 2020
  • Recently, as various wearable devices and IoT technologies have emerged and been applied to real applications, various sensors have been developed to satisfy their purposes and applied. In even In medical applications, IoT technologies have been applied gradually, and particularly, magnets and magnetic sensors have already been playing an important role in the medical industry. In wrist rehabilitation, this kind of sensor technology has enabled us to easily and conveniently measure wrist movement and gestures because there are no tangled lines required between the magnet and sensor. However, one of the drawbacks is that nonlinear output is generated because of the characteristics of a magnetic field. Also, the movement of the wrist joint involves small bones, and so it is not easy to simply model the movement. In order to resolve these issues and accurately measure sensor data, a calibration procedure is inevitable in the measurement. Thus, this paper proposes a practical model and simple calibration methods for measuring the distance between a magnet and a magnetic sensor.