• Title/Summary/Keyword: 비선형 외팔보

Search Result 37, Processing Time 0.027 seconds

One to One Resonance on the Quadrangle Cantilever Beam (정사각형 외팔보에서의 일대일 공진)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.851-858
    • /
    • 2005
  • The response characteristics of one to one resonance on the quadrangle cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential-integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one-to-one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of non-linearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Nonlinear nitration in the out of plane are also studied.

Nonplanar vibration Phenomenon of the Quadrangle Cantilever Beam (정사각형 외팔보의 비평면 진동현상)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Cho, Ho-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.62-65
    • /
    • 2006
  • In this paper, nonlinear nonplanar vibration of a flexible rectangular cantilever beam is analyzed when one-to-one resonance occurs to the beam. The planar and nonplanar motions of the beam are analyzed in time and frequency domains. In frequency domain, FFT analyzer is used to perform autospectrum and cepstrum analyses for nonlinear response of the beam. In time domain, an oscilloscope is used to investigate the phase difference between the planar and nonplanar motions and to perform Torus analysis in the phase space. Through those analyzing process, the main frequencies of superharmonic, subharmonic, and super-subharmonic motions are investigated in the nonplanar motion due to one-to-one resonance. Analyzing the phase difference between the planar and nonplanar motions, it is observed that the phase difference varies in time.

  • PDF

3-블레이드 회전익 항공기에서 기하학적 정밀 보의 공탄성 모델을 이용한 무베어링 로터의 자이로스코픽 세차 진동 제어

  • Im, Byeong-Uk;Kim, Yong-Se;Sin, Sang-Jun
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.270-281
    • /
    • 2017
  • In this paper, a vibratory disturbance to the rotor system generated by gyroscopic precession through helicopter rotor is examined. Also, active vibration reduction method is designed and simulated by designing feedback controller. For this purpose, structural analysis is carried out using EDISON's geometric exact beam program which can analyze the rotor with the cantilever condition. And the aeroelastic analysis is performed by coupling it with the simple aerodynamic model. In order to obtain the real-time structural response, the EDISON program analysis results were modeled by nonlinear equations and the Newton-Raphson method was used for the trim analysis.

  • PDF

Stability of Nonlinear Oscillations of a Thin Cantilever Beam Under Parametric Excitation (매개 가진되는 얇은 외팔보의 비선형 진동 안정성)

  • Bang, Dong-Jun;Lee, Gye-Dong;Jo, Han-Dong;Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.160-168
    • /
    • 2008
  • This paper presents the study on the stability of nonlinear oscillations of a thin cantilever beam subject to harmonic base excitation in vertical direction. Two partial differential governing equations under combined parametric and external excitations were derived and converted into two-degree-of-freedom ordinary differential Mathieu equations by using the Galerkin method. We used the method of multiple scales in order to analyze one-to-one combination resonance. From these, we could obtain the eigenvalue problem and analyze the stability of the system. From the thin cantilever experiment using foamax, we could observe the nonlinear modes of bending, twisting, sway, and snap-through buckling. In addition to qualitative information, the experiment using aluminum gave also the quantitative information for the stability of combination resonance of a thin cantilever beam under parametric excitation.

Nonplanar Nonlinear Phenomenon of Base Harmonic Excited Circular Cantilever Beam (기초조화가진을 받는 원형 외팔보의 비평면 비선형 현상)

  • Kim, Myoung-Gu;Park, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.690-695
    • /
    • 2005
  • Flexible circular cantilever beams when excited externally introduce a lot of dynamic characteristics. The non-linear elements that these flexible beams develop include non-linearity due to inertia terms, spring, and damping. They show different characteristics of motion from each other. In the modes of lower order, the non-linearity due to spring is prevalent, while the non-linearity due to inertia Is prevalent in the modes of higher order. To analyze these effects the non-linear phenomena are analyzed experimentally. When the response characteristics of non-linear vibration are analyzed using autospectrum, it is possible to analyze the subharmonic and superharmonic mot ion by comparison. The phase change is analyzed using the method of phase portrait and the non-linear characteristics of response characteristics that are developed in flexible structures can be predicted and applied to the stage of design.

  • PDF

The Static Nonlinear Analysis of the Offshore Pipeline (해저(海底)파이프라인의 정적(靜的) 비선형(非線形) 해석(解析))

  • Park, Young Suk;Chung, Tae Ju;Cho, Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.1
    • /
    • pp.57-69
    • /
    • 1990
  • The static nonlinear analysis of offshore pipeline is carried out by the finite element method. The governing equilibrium equation are derived by the principle of minimum potential energy and the modified Newton-Raphson procedure is used to solve the system of nonlinear algebraic equation. Geometrically nonlinear beam elements and spring elements are utilized to model the pipeline, stinger, pipe supports and seabed simultaneously. The beam element developed can be used to model redundant structures. It provides for both the torsional deformation and elongation of pipeline, and permits the use of different physical properties in each principal direction. The validity of this method is investigated by comparing the results with these obtained by other methods.

  • PDF

Dynamical Predictions of the Structural Connection by the Reduced Approach (축약법에 의한 구조물 결합부의 동적 거동 예측)

  • Yun, Seong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.589-596
    • /
    • 2014
  • Joints, fasteners or connected parts frequently have a significant effect on the dynamical behavior of assembled mechanical structures. Therefore, the analytical prediction of structural responses depends on the accuracy of joint modeling. This paper deals with the formulation and analysis of dynamic mechanism for joint flexibilities whose relevant magnitudes of stiffnesses are investigated by using linear and torsional springs. The equation of motion is derived by using a generic joint in the middle of clamped-clamped beam. A reanalysis due to changes in magnitudes of joint stiffnesses is based on the reduced analysis where the binomial series terms are used as basis vectors. The solution procedures are straightforward and the method can be readily used with a general finite element method. The computational effort needed by this approach is usually much smaller than the effort needed for complete vibration analysis. Two numerical examples show that accurate results are obtained efficiently by reducing the number of degree in the reduced model.