• 제목/요약/키워드: 비선형 구조해석

검색결과 1,879건 처리시간 0.026초

Nonlinear Analysis of Beam Using Linear Finite Element Method and Dynamic Analysis (선형 유한요소법과 동역학을 연계한 보의 비선형 거동 해석)

  • Jang, Sung-Hee;Lee, Seoung-Soo;Kim, Chang-Wan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 한국전산구조공학회 2010년도 정기 학술대회
    • /
    • pp.754-755
    • /
    • 2010
  • 본 논문에서는 선형 유한요소법과 동역학적 해석방법을 연계하여 유연 다물체 보의 거동을 해석하였다. 이 방법은 절대 절점 좌표계를 사용하였고, 몇 가지 수치 예제를 해석해 본 논문에서 설명하는 선형 유한 요소법과 동역학적 연계 해석방법의 타당함을 확인하였다.

  • PDF

A Study on the Nonlinear Structural Analysis of Barrel Vault-Typed Membrane Roof Structures Considering the Orthotropic Material (직교이방성을 고려한 Barrel Vault형 지붕 막구조물의 비선형 구조해석에 관한 연구)

  • Kim, Seung-Deog;Jeong, Eul-Seok;Baek, In-Seong
    • Journal of Korean Association for Spatial Structures
    • /
    • 제5권1호
    • /
    • pp.91-98
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. Therefore membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses first because of its initial unstable state, and it happens large deformation phenomenon. To find the structural shape after large deformation caused by initial stiffness introduced, we need the shape analysis considering geometric nonlinearity in structural design procedure In this study, we analyze the soft spatial structures by the NASS which is the program for nonlinear analysis. The analytic model is a roof membrane structures of Barrel Vault-Type. We have done the shape analysis and the stress-deformation analysis considering the orthotropic material, and then study the safety.

  • PDF

Vibration Analysis of Composite Laminated Plates Considered in Material-Nonlinearity (재료비선형을 고려한 복합적층판의 진동해석)

  • Seok, Keun-Yung;Kang, Joo-Won;Shin, Young-Shik
    • Journal of Korean Association for Spatial Structures
    • /
    • 제6권4호
    • /
    • pp.45-52
    • /
    • 2006
  • FRP laminated plates have strong material-nonlinearity. Through vibration Analysis of FRP laminated plates, the result of nonlinearity analysis is compared with the result of linearity analysis according to stacking angle and squency. This study is a fundamental study about displacement in nonlinearity dynamic behavior of FRP laminated plates.

  • PDF

A Modification Technique of Finite Element Model for Dynamic Analysis under Multiple Support Excitations (다지지점 가진에 대한 동적해석을 위한 유한요소모형의 수정기법)

  • 김재민
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제12권3호
    • /
    • pp.437-445
    • /
    • 1999
  • This paper presents a simple modification technique of finite element model for dynamic analysis of linear/nonlinear structural system subjected to multiple support excitation. For the sake of verification of the proposed method, dynamic responses obtained by the present technique for a couple of linear and nonlinear structural systems were compared with those by a general-purpose structural analysis software which can deal with the multi-support analysis. The method presented in this paper is expected to be used for multiple support excitation analysis by means of a computer code without the capability of modeling the non-synchronous support motion.

  • PDF

Variational Approach for the Design Sensitivity Analysis of Geometrically Nonlinear Structures (변분법을 이용한 기하학적 비선형 구조의 설계민감도 해석)

  • Ryu, Yeon Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제10권2호
    • /
    • pp.1-9
    • /
    • 1990
  • A variational approach with reference volume and adjoint structure concepts is applied for the structural design densitivity analysis of geometrically nonlinear structures. A general form of sensitivity equation is used and then nonlinear finite element procedure is implemented for the discretized structural model. Usability and effectiveness of the variational approach for the design sensitivity analysis of geometrically nonlinear structural responses are verified through a numerical example.

  • PDF

A Study on Connection Ductility of Steel Structures Subjected to Monotonic Loading (단조하중을 받는 철골구조물의 접합부 연성도에 관한 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • 제12권4호통권47호
    • /
    • pp.375-385
    • /
    • 2000
  • The required connection ductility has been evaluated, considering geometric, material and connection nonlinearity, for 6-story unbraced and 20-story braced steel structures subjected to ultimate lateral load. For material nonlinearity, section moment-curvature relationship and member stiffness matrix have been derived utilizing fiber model and linear flexibility distribution model. In 6-story structure with semi-rigid connections for rigid connection, the required connection ductility is less than that for rigid connection. In 20-story structure, the required connection ductility for semi-rigid connection is almost the same as that for shear connection and the required ductility for rigid connection is larger than that for semi-rigid or shear connection.

  • PDF

Development of Nonlinear Triangular Planar Element Based on Co-rotational Framework (Co-rotational 이론 기반 비선형 삼각평면 유한요소의 개발)

  • Cho, Hae-Seong;Shin, Sang-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제28권5호
    • /
    • pp.485-490
    • /
    • 2015
  • This paper presents development of a geometrically nonlinear triangular planar element including rotational degrees of freedom, based on the co-rotational(CR) formulation. The CR formulation is one of the efficient geometrically nonlinear formulations and it is based on the assumptions on small strain and large rotation. In this paper, modified CR formulation is suggested for the developemnt of a triangular planar element. The present development is validated regarding the static and time transient problems. The present results are compared with the results predicted by the previous researchers and those obtained by the existing commercial software.

Nonlinear Dynamic Analysis of Reinforced Concrete Shells Using Layered Elements with Drilling DOF (회전자유도를 갖는 층상화 요소를 이용한 철근콘크리트 쉘구조의 비선형 동적해석)

  • 김태훈;이상국;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제5권6호
    • /
    • pp.21-27
    • /
    • 2001
  • In this paper, a nonlinear finite element procedure is presented for the dynamic analysis of reinforced concrete shells. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis of reinforced concrete structures was used. A 4-node flat shell element will drilling rotational stiffness is used for spatial discretization. The layered approach is used to discretize behavior of concrete and reinforcement through the thickness. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor(HHT) algorithm. The proposed numerical method for the nonlinear dynamic analysis of reinforced concrete shells is verified by comparison with reliable analytical results.

  • PDF

Effect of Nonlinear Analysis Procedures for Seismic Responses of Reinforced Concrete Wall Structure (철근콘크리트 벽체구조물의 지진응답에 대한 비선형 해석기법의 영향)

  • Song, Jong-Keol;Jang, Dong-Hui;Chung, Yeong-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제26권4A호
    • /
    • pp.659-675
    • /
    • 2006
  • Recently, significant progress has been made in performance-based engineering methods that rely mainly on nonlinear static seismic analysis procedures. The Capacity Spectrum Method (CSM) and the Displacement Coefficient Method (DCM) are the representative nonlinear static seismic analysis procedures. In order to evaluate the applicability of the procedures to the seismic evaluation and design process of new and existing structures, the accuracy of both CSM and DCM should be evaluated in advance. The accuracy of seismic responses by the nonlinear static procedures is evaluated in comparison with the shaking table test results for the structural wall specimen subjected to the far field and near field earthquakes. Also conducted are comparative studies where the shaking table test results are compared with those from nonlinear dynamic analysis procedures, i.e., Single-Degree-of-Freedom (SDOF), equivalent SDOF and Multi-Degree-of-Freedom (MDOF) systems.

Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System (지반-구조물 상호작용계의 강성계수추정 및 비선형지진해석)

  • 윤정방;최준성;김재민;김문수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • 제1권1호
    • /
    • pp.41-49
    • /
    • 1997
  • This paper presents the result of an international cooperative research on the post-correlation analysis of forced vibration tests and the prediction of earthquake responses of a large-scale seismic test structure. The dynamic analysis is carried out using the axisymmetric finite element method incorporating in finite elements for the for field soil region. Through the post-correlation analysis, the properties of the soil layers are revised so that the best correlation in the responses may be obtained compared with the measured force vibration test data. Utilizing the revised soil properties as the initial linear values, the seismic responses are predicted for an earthquake using the equivalent linearlization technique. It has been found that the predicted responses by the equivalent nonlinear procedure are in excellent agreement with the observed responses, while those using the linear properties are fairly off from the measured results.

  • PDF