• Title/Summary/Keyword: 비선형 강성

Search Result 586, Processing Time 0.03 seconds

A Simplified Finite Element Method for the Ultimate Strengh Analysis of Plates with Initial Imperfections (초기결함을 가진 판의 최종강도해석을 위한 간이 유한요소법)

  • Jeom-K.,Paik;Chang-Y.,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.24-38
    • /
    • 1989
  • In this study, an attempt for formulating a new and simplified rectangular finite element having only four corner nodal points is made to analyze the elastic-plastic large deformation behaviour up to the ultimate limit state of plates with initial imperfections. The present finite element contains the geometric nonlinearity caused by both in-plane and out-of-plane large deformation because for very thin plates the influence of the former may not be negligible. Treatment of expanded plastic zone in the plate thickness direction of the element is simplified based upon the concept of plastic node method so that the elastic-plastic stiffness matrix of the element is derived by the simple matrix operation without performing complicated numerical integration. Thus, a considerable saving of the computational efforts is expected. A computer program is also completed based on the present formulation and numerical calculation for some examples is performed so as to verify the accuracy and validity of the program.

  • PDF

Nonlinea Perturbation Method for Dynamic Structural Redesign (동적(動的) 구조(構造) 재설계(再說計)를 위한 비선형(非線形) 섭동법(攝動法))

  • Kyu-Nam,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.39-45
    • /
    • 1989
  • Many mechanical systems including ships and/or offshore structures have poor dynamic response characteristics such as undesirable natural frequencies and undesirable mode shapes. It is mandatory to redesign the structure. In this paper a procedure for the dynamic redesign of an undamped structural system is presented. The method which uses a penalty function with a penalty term containing error in equilibrium for a given vibration mode may have a shortcoming. This method includes unconstrained eigenvector degrees of freedom as unknowns. In the work developed here, only constrained mode shape changes are used in the solution procedure, resulting in a reduction of the unnecessary calculations. Among the set of equations which characterizes the redesign of the structural systems, the under constrained problem is discussed here and formulated as an optimization problem, with an optimal criterion such as minimum change or minimum structural weight of the system. Four simple numerical applications illustrate the efficiency of the method. The method can be applied to the vibration problems of ships and/or offshore structures with an implementation of the commercial FE codes.

  • PDF

Structural Performance of Double Rip Decks Reinforced with Inverted Triangular Truss Girders (역삼각 트러스 거더로 보강된 더블 골 데크 성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Chung, Kyung-Soo;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.559-566
    • /
    • 2017
  • This paper proposes a new composite deckplate system reinforced with inverted triangular truss girders(called 'D Deck'), which does not require the use of temporary supports at construction stage. The proposed system retains increased stiffness and strength while keeping the absolute floor height change to a minimum level and can be utilized as floor systems of various types beam members such as the conventional wide-flange and U-shaped composite beams. In order to evaluate the performance of the proposed system, five specimens with a span of 5.5 m were fabricated and tested under field loading conditions consisting of several intermediate steps. The load-deflection curves of each specimen were plotted and compared with the nonlinear three-dimensional finite element analysis results. The comparison showed that the effective load sharing between the truss girders and floor deck occurs and the maximum deflection under construction stage loading is well below the limit estimated by the provisions in Korea Building Code.

Structural Performance of a New Truss Deckplate System with UHPC Infilled Top Chords in Construction Stage (UHPC 충전형 상현재를 활용한 트러스 데크플레이트 시스템 시공단계 구조성능 평가)

  • Son, Hong-Jun;Kim, Young-Ho;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.137-144
    • /
    • 2020
  • In this study, we propose a new truss deckplate system, which does not require temporary floor supports during construction, with ultra-high-performance concrete (UHPC) infilled top bars. The increased stiffness and strength of the proposed system were well retained as compared to those of the existing truss deckplate systems, thereby resulting in the reduction of maximum deflection at the span center. Four-point bending tests were performed on five specimens with a net span of 4.6 m to evaluate the structural performance of proposed system in the construction stage. In addition, the load-deflection curve was plotted for each specimen, and the effects of test parameters were analyzed. Further, a rigorous nonlinear three-dimensional finite element analysis was performed, and its results were compared with the test results. From the results, it was observed that the test specimens of the proposed system exhibited superior performance as compared to those of the existing one and also satisfied the serviceability requirement during construction provided by the Korea Building Code 2016.

Nano-Positioning of High-Power Ultrasonic Linear Motor Stage in High-Vacuum Environment (고진공 환경중 고출력 초음파 모터 이송 스테이지의 나노미터 위치 제어)

  • Kim, Wan-Soo;Lee, Dong-Jin;Lee, Sun-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1613-1622
    • /
    • 2010
  • In this paper, the ultraprecision positioning control of an ultrasonic linear motor in a high-vacuum environment is presented. The bolt-clamped Langivin type transducer (BLT) with the 3rd longitudinal; and 6th lateral vibration modes was developed, which was excited by using the Eigen resonance frequency for two vibration modes in order to generate stable and high power. In practical applications, however, even if a geometrical design has an Eigen frequency, discordance between both mode frequencies can be generated by the contact mechanism and because of manufacturing errors as well as environmental factors. Both mode frequencies were precisely matched by adjusting the impedence. By using this method, the BLT can be driven under any environmental conditions. The nominal characteristic trajectory following(NCTF) control method was adopted to control the positioning of the system in vacuum. The developed linear motor stage show high positioning accuracy with 5 nm.

Seismic Fragility Analysis of a Cable-stayed Bridge with Energy Dissipation Devices (에너지 소산장치를 장착한 사장교의 지진 취약도 해석)

  • Park, Won-Suk;Kim, Dong-Seok;Choi, Hyun-Sok;Koh, Hyun-Moo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.1-11
    • /
    • 2006
  • This paper presents a seismic fragility analysis method for a cable-stayed bridge with energy dissipation devices. Model uncertainties represented by random variables include input ground motions, characteristics of energy dissipation devices and the stiffness of cable-stayed bridge. Using linear regression, we established demand models for the fragility analysis from the relationship between maximum responses and the intensity of input ground motions. For capacity models, we considered the moment and shear force of the main tower, longitudinal displacement of the girder, deviation of the stay cables tension and the local buckling of the main steel tower as the limit states for cable-stayed bridge. As a numerical example, fragility analysis results for the 2nd Jindo bridge are presented. The effect of energy dissipation devices is also briefly discussed.

A Damage Model for Predicting the Nonlinear Behavior of Rock (암석의 비선형 거동해석을 위한 손상모델 개발)

  • 장수호;이정인;이연규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.83-97
    • /
    • 2002
  • An experimental model which considers post-peak behaviors and pre-peak damage characteristics representing changes of elastic moduli in each damage level was developed. From experiments, some damage thresholds of rocks were determined, and regression analyses were carried out in order to represent changes of elastic moduli in each damage level as functions of confining pressure. In addition, it was intended to simulate post-peak behaviors with Hoek-Brown constants, $m_r\;and\;s_r$ for post-failure. The developed experimental model was implemented into $FLAC^{2D}$ by a FISH function. From results of parametric studies on Hoek-Brown constants for post-peak, it was revealed that uniaxial compressive strength more highly depends upon $s_r$, although it depends on both $m_r\;and\;s_r$. It was also shown that the post-peak slopes of stress-stain curves depend mainly on $m_r$. When the optimum models obtained from parametric studies were applied to numerical analysis, they predicted maximum strengths obtained from experiments and well simulated stiffness changes due to damage levels.

Seismic Control of Tuned Mass Damper System with MDOF Sliding Mode Control Accounting for the Uncertainties (불확실성을 고려한 동조질량 감쇠기(TMD) 시스템의 다자유도 슬라이딩 모드 지진동 제어)

  • Lee, Jin Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.235-242
    • /
    • 2011
  • The control performance in active structural control system can be drastically deteriorated when the modeling errors and the uncertainties existing in the disturbances are disregarded in the designing stage. It can even throw the control system into an unstable phase, resulting in out of control against the seismic excitations. The purpose of the study is to investigate the control effectiveness of a non-linear control system called sliding mode controller(SMC) in cooperation with a Tuned Mass Damper subjected to the three seismic excitations selected from the FFT analysis. Even though the transient performance such as settling time and overshoot were deteriorated, the robustness against the system stability was appeared from SMC when the structural masses and stiffness perturbed within the range of ${\pm}30%$. SMC is a feasible technique for active structural control in cooperation with TMD against seismic disturbances, exhibiting robustness in perturbation of system stiffness and mass as well as uncertainties of the disturbances.

A Study on Three-dimensional Dynamic Analysis of a Towing Cable for Marine Survey Instruments (해양탐사장비 예인케이블의 3차원 동적해석에 관한 연구)

  • 정동호;김종규;박한일
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.203-209
    • /
    • 2003
  • In this study, the configuration and tension of a towing cable for side-scan sonar are predicted in an ambient flow and at an unsteady towing condition. The governing equation of three-dimensional dynamic analysis for a flexible cable is solved using a finite difference method. We successfully predict the configuration and tension of a side-scan sonar and designed the towing system. It is found in static analyses that the side-scan sonar must be towed to keep a its stable depth at a reasonable speed. The study also reveals in the transient analyses that the dominant component affecting the top tension is the tangential drag force for the larger towing speed than the critical speed, and the soft weight of a towed instrument for the smaller towing speed than. It should be maneuvered for a towing vessel with good consideration for the impact effect in a cable due to tension peak when a towing speed is suddenly increase. The developed program can be applicable for three-dimensional dynamic analysis of a towing system for various marine survey instruments.

Strength Analysis of a Slender Doubler Plate of Ship Structure subjected to the Longitudinal In-plane Compression (종방향 면내 압출하중을 받는 세장한 선박 이중판의 강도 해석)

  • Juh-Hyeok Ham
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.4
    • /
    • pp.92-105
    • /
    • 2000
  • A study for the structural strength evaluation on the slender doubler plate has been performed through the systematic evaluation process. In order to estimate the proper static strength of doubler plate subjected to the longitudinal in-plane compression, elasto-plastic large deflection analysis is introduced including the contact effect between main plate and doubler. The characteristics of stiffness and strength variation are discussed based on their results. Also, in order to compare the doubler structure with the original strength of main plate without doubler, a simple formula for the evaluation of the equivalent flat plate thickness is derived based on the additional series analysis of flat plate structure. Using this derived equation, the thickness change of a equivalent flat plate is analyzed according to the variation of various design parameters of doubler plate and some design guides are suggested in order to maintain the original strength of main plate without doubler reinforcement. Finally, correlation between derived equivalent flat plate formula and the developed buckling strength formulas by author et al. is discovered and these relations are formulated for the future development of simple strength evaluation formula of doubler plate structure.

  • PDF