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Abstract

Many mechanical systems including ships and/or offshore structures have poor dynamic
response characteristics such as undesirable natural frequencies and undesirable mode shapes. It
is mandatory to redesign the structure. In this paper a procedure for the dynamic redesign of
an undamped structural system is presented. The method which uses a penalty function wirth
a penalty term containing error in equilibrium for a given vibration mode may have a
shortcoming. This method includes unconstrained eigenvector degrees of freedom as unknowns.
In the work developed here, only constrained mode shape changes are used in the solution
procedure, resulting in a reduction of the unnecessary calculations. Among the set of equations
which characterizes the redesign of the structural systems, the under constrained problem is
discussed here and formulated as an optimization problem, with an optimal criterion such as
minimum change or minimum structural weight of the system. Four simple numerical applica-
tions illustrate the efficiency of the method. The method can be applied to the vibration problems

of ships and/or offshore structures with an implementation of the commercial FE codes.
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1. Introduction

For the poor dynamic responsed structures, one
can minimize the excitation forces or perform struc-
tural redesign. Since change or reduction of the
exciting loads may be impossible in general, it is
necessary to redesign the structure. Trial and error
methods are often employed, however trial and error
methods are expensive and sometimes inconclusive.

In the past the dynamic redesign problem has been
studied and several typical procedures were proposed
[1~4]. In more recent work, Sandstrom developed
first order equations, that means the higher order
terms were neglected in the solution procedures(13.
Kim and Anderson formulated the problem using the
complete nonlinear dynamic equilibrium perturbation
equation(2,3]. A penalty function method, where
the objective function was a minimum weight or
minimum mass condition and the penalty term was
a set of residual force errors, was employed. Their
method is theoretically exact but may have a short
coming. Hoff formulated the problem using an
incremental formulation with a predictor-corrector
solution(4). This is a kind of iteration method. In
the followings, fundamental theoretical background
of redesign procedures are introduced and a new

procedure for the problem is proposed.
2. The Perturbation Methods

The eigenvalue problem in the dynamic analysis

of structures can be expressed as:

Baseline system ()(¢)={(ml$]I(2] )]
where [#] and (m) are the stiffness and mass
matrices and [¢],(2) are the eigenvectors and
eigenvalues.

If the masses and stiffnesses are changed, the
eigenvalues and eigenvectors also change. We call this
system as objective system in comparison with the
baseline system expressed in equation ). The
equilibrium equation for such a perturbed eigen
system is:

Objective system (&'1(¢"1=0m'I¢"I(X] )
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The energy equations can be obtained by premul-
tiplying equation (1) and (2) by [¢1T, (¢/37
(gITLRI($) =[] (mI(gI(2] @
(¢ TR 1¢" 1=Tg 1T (m' I (2"] (€))]
Relationships between the baseline system and the
objective system can be defined in terms of pertuba-
tion of the baseline system.
(R I=[k]1+(4k)
[m!]=[m]+(4m]
(¢ 3=+ 49
O)=[23+042] (5)
Equations (2) can be expanded to show the nonli-
nearity in the perturbed terms.
(CRI+ (48D (Cpd-+149D)
= ([m)+(4m]) ({$2) (L2 + 142D )]
Terms up to the third order are shown in equation
(6). In linear perturbation methods, terms involving
4% and higher terms were neglected(1]. In subsequent
work here, all terms in equation (6) are included.
Two approaches can be used. First, one can perturb
the stiffness and mass of the system and solve for
frequencies and mode shape changes which results.
This is called a forward perturbation. Second, one
can specify desired changes in frequencies and mode
shapes and determine the changes to the stiffness
and mass required to cause the change. This is an
inverse perturbation.
A practical interpretation can be given to the
structural changes: (4k), [4m). By decomposing the
system changes into L element changes, the structural

changes are expressed as

(e =L04h.) @
L
(dmaysen =04, ®)

Furthermore, each element change can be expressed

as a fractional change from the baseline structural

element.
(dkJ={k]at ®
[Ame] = [m‘]a:n (10)

where a* and a7 represent the fractional change in

the stiffness and the mass of the element e respec-

tively. Thus we can get the expressions for the
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changes as
L
Edk]systengltke]a’: an
L
[Am]syszengima]“:n (12)

The perturbed ecigenvalue is defined,
Al =2+ 42: =l +4(w;)? a3
The perturbed eigenvector in equation (5) can be

expressed in terms of a single eigenvector change

(g = | a4

where (4¢°} and {4¢¥] are the constrained (specified)
and the unconstrained degrees of freedom respectively.
Usually, the number of specified terms {d¢°} are
fewer than [4¢*}.

In some perturbation schemes, the perturbed mode
can be represented as a linear combination of mode
shapes obtained in the analysis of the baseline system
(1l:

{4¢) =g (C} (15)

This formal representation of the perturbed eigen-
vector, using a truncated set of eigenvectors as a
basis, is purely a static relation. The perturbed
eigenvectors may lack orthogonality.

The object of the redesign process is to get the
solution of the equations (2) in terms of design
variables a,. To check whether these obtained design
variables « can give the desired constrained modal
characteristics of the system we may do reanalysis

the system.

3. Nonlinear Perturbation with Penalty
Function Formulation {2,3]

This method has already shown good behavior for
small systems of equations.

For the purpose of the comparison, this method is
discussed here briefly.

The basic equations are the perturbed equation of
motion (6) where all terms are included in the
analysis. The unknowns are the mass and stiffness
perturbations [dm], (4k] needed to create desired
mode and frequency changes [4¢], (44].

For the ith mode {¢}:, any approximate solution
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to the perturbed equilibrium equation has residual
force error

(R =k [¢'}i—(m" I {¢'}:2/= (16)
The penalty function is taken as
F({a}, {4¢}:, 42
=f({a}) +uP(la}, (4¢*}:, 425 an
The penalty term P({a}, {4¢*};, 44) has been
found to be best chosen as a weighted norm of force
unbalance at the nodal degrees of freedom:
=(R3T(Ir'); (R} 18)
Where {R}
weighting matrix (['); is diagonal and its jth com-
ponent is:
(=5 a9
that is jth component of the i th eigenvector.

is the residual force error and the

The penalty function acts to minimize the error
in energy in the particular mode of vibration. The
method can be generalized to include more than one
mode by including the corresponding error in the
penalty term.

As can be seen in the equation (17), one short
coming of the penalty function method is that this
method need to include unconstrained eigenvector
degrees of freedom as unknowns. As pointed out
previously, the number of specified terms are extre-
mely fewer than the number of unspecified terms. In
the algorithm developed in this paper, the unspe-
cified terms are excluded in the solution procedure,
resulting in a reduction of considerable amount of

associated calculations.
4. Solution Procedure for Redesign

Solution of equation (2) will provide the required
structural changes to meet the modal objectives. The
solution procedure to find the structural changes is
based on splitting equation (2) for single mode into
left and right side by dividing the new eigenvector
into the baseline mode and mode shape change:

={p) i+ {4¢):

In thxs work, we emphasize that in practice, only
a few mode components are constrained while most
of the components are unconstrained. For convenience,

consider a single mode:
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Let 2,/ be an eigenvalue of our objective system.
Equation (2) for single mode is,
(1= 4/(m"]) {6} = {0} (20)
Here {$’}; can be decomposed as the sum of the
baseline mode shape and the mode shape change
relative to the baseline structure. We can normalize
such that the maximum component of the objective

mede is unity.

(¢’ i= g} i+ {d¢}: @D
Which can be expressed as,

R

1 552'}_? P2 !;‘ d¢a ‘ o)

195:3'_“%3%\ A‘E'ba |

‘¢'/ﬁ TR

We can express cquation (20) using equation (22)
(R ) —2/(m/ ) {dg}i=— (R I — 2 (1) (¢} (23)

Let ({k-—4:0m’))=(4]

As we can see, matrix [A] is singular thus we
can not calculate its inverse.

The rank of matrix [A)} is #-1 provided each
cigenvalue is distinct.

Elimination of the first column of [A] in the left
hand side of eq. (23) which is multiplied by zero by
no means changes the characteristics of the system.
And since the rank of matrix [A) is »#~1 we only
need #-1 equations for solving for {4¢j; in equation
(23). Let's choose n-1 equations by discarding first
equation. Then we get an (n-1) X (#-1) square
matrix in the left hand side, which is not singular.
Let this non-singular matrix be [RA). Expressing
the equation (23) with [RAJ after discarding the
first column and row of matrix [A):

CRAS  {d$);=—([RC | RA

(n—=1) % (n—1) (n—1)*1 (n=1)x1

BIRC-IF (24)

{(n=Lyx(n—1) =axl

Premultiplication of equation (24) by (RAJ™! gives

14¢}i=—1{¢} i~ (RAIT{RC] (25
The mode shape change is composed of two parts:
g = 55 (26)

where {4¢°}, {d¢*} are the constrained and uncons-
trained mode shape change, respectively.
Equations (25) and (26) give

o= - R4 T o &)

As we can see from equation (27), we only need
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RAc part of [RA]™! corresponding to constrained
mode shape change 4¢°. Noting that we do not need
to calculate whole inverse of [RAJ. We only need
to calculate a small part of inverse of [RA). This
can be done using the definition of inverse of a
matrix. That is.

(RA)'=adj[RA}/det (RA] (28)

Let [LRA]] be the upper rows of [RA]™! corres-
ponding to the constrained mode shape change 4¢c.
Then {[RAJ] can be obtained by calculating only
a few number of adj [RA’. Determinant calculation
needs far less efforts than the inverse calculation
needs.

Finally we get one equation which does not include
unconstrained mode shape changes:

[4¢¢) =—[¢¢] —((RAJ] {RC} (29)

The system has a set of these equations according
to how many mode shapes are constrained.

In the case of underconstrained problems, mathe-
matical programming techniques can be used to
achieve minimum weight or minimum change of the
structure(5, 6). Solving the equation (29) and the
optimality criterion gives the desired design values
a, for the objective structural system.

The solution of these perturbation equations falls
into three categories. They are overconstrained case,
unique case, underconstrained case. The system is
usually underconstrained (under-determined), i.e.,
there is more than one physical redesign, one requires
either minimum weight or the least structural change

from the original design. For minimum weight, the
objective function is

Flad =% (30)

The a; can be o or a”. For some cases «f coin-

cides with «”. Rather than using this criterion, one
can use minimum structural change from the baseline

design. The objective function is then taken as,
L
S :gla? 31

For the practical implementation of the redesign
technique, various commercial FE code should be
incorporated with the algorithm. However in this

paper the author would like to show the procedure
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and four simple examples are illustrated using the

perturbation method described in this paper.
5. Numerical Examples of Redesign

Example 1

For the simplicity, the mass-spring system with
three degrees of freedom is used to illustrate the
both frequency and mode
The goal
of redesign is to change mode 1 such that axial
is 0.372 instead of the
baseline value of 0.445. The first frequency squared
will be 0.260 instead of the baseline value of 0.198.

The design variables are the changes of stiffness and

method. In this example,
shape are constrained for the first mode.

displacement at node 1

mass at the same rate, that is a*=a™”. In the example

problems, the Generalized Reduced Gradient Methods
The

problem is formulated as an optimization problem

is used for the constrained minimization[(7].

with an optimal criterion of a minimum weight.

And the baseline structure (a;=0, i=1 to L) is
used for the initial starting point.
y
g — K3
R o
4 * ! «(‘\ A ‘ as A 1‘
[ ] = - L ) e [ 3
q\mﬂ LI AR T |
A nodel noge noded
1
/1
=D M= m3=

=10, 2—10 $3=10.
Fig. 1 Example problem for redesign

The obtained stiffness and mass with design

variables of a;=1.0, a;=0.5, a;=0.0, gives exact
values of desired frequency and mode shape.
It should be noted that this example is contrived,

in the sense that the goals were set to coincide with

Table 1 First frequency and mode shape, case 1

Deslred ‘ Predlcted

I Baselme
Eigenvalue |  0.198 |  0.260 ; 0..260
Eignervector | 0.445 0.372 | 0.372
| 0.802 0.73 | 0.739
L 1.000 1.000

1. 000
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Basalne

Node 1 ? 3

Fig. 2 First mode of perturbed mass-spring system,
case 1

integer constants.
Example 2

In this example the mode shape change is tripled
from that of first example. The goal of redesign is
to change mode 1 such that axial displacement at
node 1 is to be 0.227 and first frequency squared is
to be 0.284. The percentage change for the mode
shape and the frequency of first mode will be —48.9
%, 19.8%m, The obtained stiffness

and mass with design variables of a1=2.0, ax=a3=0,

respectively.

gives exact values of desired shown in Table 2.

|
l

Saseiine

R N e

/ ‘\ Parturpec
// -
- - !
Node (v 2 e

Fig. 3 First mede_ of perturbed mass-spring system,
case 2

Table 2 First frequency and mode’shape, case 2

. Predicted

i Baseline 1\ Desired
Eigenvalue 0.198 | 0.284 f 0. 284
Eignervector  0.445 | 0.227.0 0,227
0.802 |  0.715 0.715
1.000 | 1.000 | 1.000
Example 3

The cantilever beam model shown in Fig. 4 can
be used to demonstrate the potential of the method
developed here. The stiffness matrix and consistent

mass matrix for a beam element are:
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R 6L —12 6L

()=gyrs | Ol 4LF —6L 2L
—-12 —6L 12 —6L
6L  2L* —6L  4L?
o156 22L 54 —13L
__ar2
Cm)=pAL/420 221 412 13L 3L
[ 54 13L 156  —22L
—13L —3L? —22L 412
r Serman: ° Element 2
P s °
A Ncage Noge 2 Node 3

Fig. 4 Cantilever beam model

Daia assumed for the beseline model are given in
Table 3. The baseline vibration characteristics are
given in Table 4.

Suppose that the goal of redesign is to change
mode 1 such that the translation of node 2 of mode
1 is 0.349 instead of the baseline value of 0.339.
The problem is formulated as an optimization problem
with an optimal criterion of a minimum change from
the baseline system. That is:

min E}ilaf

For a starting point the baseline system is used.
Here a. refers af and masses are assumed not to
change.

The important characteristics of the solution pro-
cedure are:

1. Both element will be allowed to change

2. Changes in the bending stiffness of each beam

(I, I,) will be used to accomplish this change

3. Frequencies are not constrained for this example

Table 3 Baseline beam element properties

! Element 1 l Element 2

I —Moment of Inertia } 1.0 ‘ 1.0
A—Area ; 1.0 1.0
L—Length 1 0.5 0.5
E—Young’s Modulus ' 1.0 1.0
p —Density | 1o } 1.0
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Table 4 Baseline beam modal characteristics

(mode 1)

Frequency (rad/sec) 2.87

Node 1 Translation 0.0

Node 1 Rotation 0.0
Node 2 Translation 0. 339
Node 2 Rotation 1.163
Node 3 Translation ‘ 1. 000
Node 3 Rotation | 1.376

Result by this new method gives the following
baseline system modifications.
I,—decreased by 1.80%
Iy—increased by 53.87%
The modified system yields the node 2 translation
of the first mode of 0,349,
The value represents the exact node 2 translation
desired.

Table 5 Desired and predicted modal characteristics,
case 3

Desired

(goal) ‘ Predicted

)Baselinel
Translation of node | ’

2 of mode 1

| 0

0.339 | 0.349 ‘ 0.349

Example 4

In this example, the mode shape change is doubled
from that of previous example.

The goal of redesign is to change mode 1 such
that the translation of node 2 of mode 1 is 0.359
instead of the baseline value of 0.339. The problem
is also formulated as an optimization problem with
an optimal criterion of a minimum change from the
baseline sytem.

Result using this method gives following baseline
system modifications.

I,—decreased by 3.49%

I—increased by 228.64%

Table 6 Desired and predicted modal characteristics,
case 4

Baseline}’ I()gii;ﬁd , Predicted

Translation of node

2 of mode 1 0.339 : 0.359

0. 359

Journal of SNAK, Vol. 26, No. 1, March 1989
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-
z
|
|

Basaine

Node 1 2

Fig. 5 First mode of cantilever beam model 2

The modified system yields the node 2 translation
of the first mode of 0.359.

This represents the exact node 2 translation desired.

These final results indicate the method has worked

very well for these cases.
6. Conclusions

The main contribution of this paper is the develo-
pment of an efficient procedure for dynamic redesign
of the structural system. The elimination of the
unspecified modal degrees of freedom in the solution
procedure in the present method can be proved to be
effective by comparison with the competing method
introduced in the contents. Eventhough numerical
examples are very simple, the method is proved to
work quite well,

For the redesign problems of more complicated
larger degrees of freedom system, various commercial
FE programs is to be incorporated and this works
are recommended for future research work. Evidently
the method can be applied to the vibration problems

of ships and/or offshore structures with an imple-
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mentation of the commercial FE codes. Work on the
inverse perturbation method is continuing and we
feel that the method is of significant value to

engineers.
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