• Title/Summary/Keyword: 비디오 감시

Search Result 188, Processing Time 0.025 seconds

Automatic Detection of Dissimilar Regions through Multiple Feature Analysis (다중의 특징 분석을 통한 비 유사 영역의 자동적인 검출)

  • Jang, Seok-Woo;Jung, Myunghee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.160-166
    • /
    • 2020
  • As mobile-based hardware technology develops, many kinds of applications are also being developed. In addition, there is an increasing demand to automatically check that the interface of these applications works correctly. In this paper, we describe a method for accurately detecting faulty images from applications by comparing major characteristics from input color images. For this purpose, our method first extracts major characteristics of the input image, then calculates the differences in the extracted major features, and decides if the test image is a normal image or a faulty image dissimilar to the reference image. Experiment results show that the suggested approach robustly determines similar and dissimilar images by comparing major characteristics from input color images. The suggested method is expected to be useful in many real application areas related to computer vision, like video indexing, object detection and tracking, image surveillance, and so on.

Deep Learning-based Action Recognition using Skeleton Joints Mapping (스켈레톤 조인트 매핑을 이용한 딥 러닝 기반 행동 인식)

  • Tasnim, Nusrat;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.155-162
    • /
    • 2020
  • Recently, with the development of computer vision and deep learning technology, research on human action recognition has been actively conducted for video analysis, video surveillance, interactive multimedia, and human machine interaction applications. Diverse techniques have been introduced for human action understanding and classification by many researchers using RGB image, depth image, skeleton and inertial data. However, skeleton-based action discrimination is still a challenging research topic for human machine-interaction. In this paper, we propose an end-to-end skeleton joints mapping of action for generating spatio-temporal image so-called dynamic image. Then, an efficient deep convolution neural network is devised to perform the classification among the action classes. We use publicly accessible UTD-MHAD skeleton dataset for evaluating the performance of the proposed method. As a result of the experiment, the proposed system shows better performance than the existing methods with high accuracy of 97.45%.

An Optimal Implementation of Object Tracking Algorithm for DaVinci Processor-based Smart Camera (다빈치 프로세서 기반 스마트 카메라에서의 객체 추적 알고리즘의 최적 구현)

  • Lee, Byung-Eun;Nguyen, Thanh Binh;Chung, Sun-Tae
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.17-22
    • /
    • 2009
  • DaVinci processors are popular media processors for implementing embedded multimedia applications. They support dual core architecture: ARM9 core for video I/O handling as well as system management and peripheral handling, and DSP C64+ core for effective digital signal processing. In this paper, we propose our efforts for optimal implementation of object tracking algorithm in DaVinci-based smart camera which is being designed and implemented by our laboratory. The smart camera in this paper is supposed to support object detection, object tracking, object classification and detection of intrusion into surveillance regions and sending the detection event to remote clients using IP protocol. Object tracking algorithm is computationally expensive since it needs to process several procedures such as foreground mask extraction, foreground mask correction, connected component labeling, blob region calculation, object prediction, and etc. which require large amount of computation times. Thus, if it is not implemented optimally in Davinci-based processors, one cannot expect real-time performance of the smart camera.

  • PDF

Wireless Control System Using Spherical Camera (구형체 카메라를 이용한 무선 관제 시스템)

  • Jang, Jae-min;Shin, Soo Young;Ji, Yong-ju;Chae, Seog
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.461-466
    • /
    • 2016
  • In this paper, a capsule body shaped surveillance/monitoring device is developed. The device includes a camera and GPS module to transmit live video data and real time GPS coordinates respectively using the Intel Edison module. A control application is developed for the smart phones and tablets to wirelessly view the live video stream and location of the capsule device and also to switch between the multiple capsule devices installed at different locations. The coordination between the developed device and the smart phone / tablet is done using the wireless function of the Intel Edison module.

An Implementation Strategy for the Physical Security Threat Meter Using Information Technology (정보통신 기술을 이용한 물리보안 위협 계수기 구현 전략)

  • Kang, Koo-Hong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.7
    • /
    • pp.47-57
    • /
    • 2014
  • In order to publicly notify the information security (Internet or Cyber) threat level, the security companies have developed the Threat Meters. As the physical security devices are getting more intelligent and can be monitored and managed through networks, we propose a physical security threat meter (PSTM) to determine the current threat level of physical security; that is a very similar compared with the one of information security. For this purpose, we investigate and prioritize the physical security events, and consider the impact of temporal correlation among multiple security events. We also present how to determine the threshold values of threat levels, and then propose a practical PSTM using the threshold based decision. In particular, we show that the proposed scheme is fully implementable through showing the block diagram in detail and the whole implementation processes with the access controller and CCTV+video analyzer system. Finally the simulation results show that the proposed PSTM works perfectly under some test scenarios.

A Framework for Object Detection by Haze Removal (안개 제거에 의한 객체 검출 성능 향상 방법)

  • Kim, Sang-Kyoon;Choi, Kyoung-Ho;Park, Soon-Young
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.168-176
    • /
    • 2014
  • Detecting moving objects from a video sequence is a fundamental and critical task in video surveillance, traffic monitoring and analysis, and human detection and tracking. It is very difficult to detect moving objects in a video sequence degraded by the environmental factor such as fog. In particular, the color of an object become similar to the neighbor and it reduces the saturation, thus making it very difficult to distinguish the object from the background. For such a reason, it is shown that the performance and reliability of object detection and tracking are poor in the foggy weather. In this paper, we propose a novel method to improve the performance of object detection, combining a haze removal algorithm and a local histogram-based object tracking method. For the quantitative evaluation of the proposed system, information retrieval measurements, recall and precision, are used to quantify how well the performance is improved before and after the haze removal. As a result, the visibility of the image is enhanced and the performance of objects detection is improved.

Codebook-Based Foreground Extraction Algorithm with Continuous Learning of Background (연속적인 배경 모델 학습을 이용한 코드북 기반의 전경 추출 알고리즘)

  • Jung, Jae-Young
    • Journal of Digital Contents Society
    • /
    • v.15 no.4
    • /
    • pp.449-455
    • /
    • 2014
  • Detection of moving objects is a fundamental task in most of the computer vision applications, such as video surveillance, activity recognition and human motion analysis. This is a difficult task due to many challenges in realistic scenarios which include irregular motion in background, illumination changes, objects cast shadows, changes in scene geometry and noise, etc. In this paper, we propose an foreground extraction algorithm based on codebook, a database of information about background pixel obtained from input image sequence. Initially, we suppose a first frame as a background image and calculate difference between next input image and it to detect moving objects. The resulting difference image may contain noises as well as pure moving objects. Second, we investigate a codebook with color and brightness of a foreground pixel in the difference image. If it is matched, it is decided as a fault detected pixel and deleted from foreground. Finally, a background image is updated to process next input frame iteratively. Some pixels are estimated by input image if they are detected as background pixels. The others are duplicated from the previous background image. We apply out algorithm to PETS2009 data and compare the results with those of GMM and standard codebook algorithms.

A generating samples method for multiple object tracking using motion histogram (다중 물체 추적에서의 모션 히스토그램을 이용한 샘플 생성 기법)

  • Chun, Ki-Hong;Kang, Hang-Bong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.744-749
    • /
    • 2007
  • 물체 추적시스템은 비디오 감시 시스템, 화상회의 시스템과 같은 다양한 비전 응용 분야에서 점점 비중이 높아지고 있다. 이 시스템에서 가장 널리 사용되고 있는 방법 중 하나로 Particle-Filter를 들 수 있다. 하지만, 이 Particle-Filter의 단점은 유사한 여러 물체를 추적할 때에 그 물체들이 겹치거나 사라질 경우 정확한 추적을 하기 어렵다는 것이다. 이 단점을 극복하기 위해 많은 연구가 진행되고 있으며, 본 논문에서는 이 문제를 극복하기 위한 새로운 방법을 제안하고자 한다. 다중 물체 추적에서 빈번히 일어나는 문제는 두 가지로 요약할 수 있는데, 동일한 다중 물체가 부분적으로 엇갈리거나 다른 객체에 완전히 겹친 후 떨어질 때 한 물체를 중복하여 추적하는 문제(merge and split problem)와 이 때 분리되어 추적은 됐지만, 물체를 혼동하여 추적하는 문제(Labeling problem)이다. 본 논문에서는 이 러한 문제들을 풀기 위해 이미지 필드에서 보다 정확한 확률분포를 만들고, 이 확률분포의 신뢰성을 높이기 위해서 물체의 특징정보를 표현하는 몇 가지 방법을 제안한다. 전자의 문제는 두 가지 문제로 나누어 생각해 보았다. 첫째, 복잡환 환경에서의 분포를 찾아내는 것과 둘째, 추적 중인 물체를 잃어버릴 경우 새로운 샘플을 생성함으로써 나누어 보았다. 이 문제 중 첫번째는 K-means 클러스터링을 이용하여 유사한 물체가 주변에 퍼져 있을 때, 하나의 후보 위치가 아닌, K개의 후보 위치들을 만들어 내어 보다 정확한 추적이 가능하게 하였으며, 두 번째 문제는 추적 중인 물체가 다른 커다란 물체에 가려질 경우이다. 이 상황에서 샘플을 생성하는 방법은 지금까지 해왔던 간단한 환경에서의 생성 범위와는 다르게 넓게 해야 생성시켜야 한다. 이 때 샘플링의 수를 늘리지 않으면서, 최대한 정확하게 추적하기 위해서 동영상에서 물체의 모션을 이용한 모션 히스토그램을 얻어내고, 그 정보를 이용하여 샘플을 생성하는 위치를 조절함으로써 이 문제를 풀어 보았다. 그리고, 후자의 문제인 이미지 필드상에서 확률분포의 신뢰성을 높이기 위한 특징 정보는 기존에 많이 사용하던 칼라 히스토그램에 공간정보의 의미를 부여하는 칼라 히스토그램을 분할하는 방법과 SIFT에서 사용하는 방향정보와 크기정보를 사용했다. 이것들을 사용하여 보다 정확한 물체추적시스템을 다음과 같이 제안한다.

  • PDF

Non-Dyadic Lens Distortion Correction and Image Enhancement Based on Local Self-Similarity (자기 예제 참조기반 단계적 어안렌즈 영상보정을 통한 주변부 열화 제거)

  • Park, Jinho;Kim, Donggyun;Kim, Daehee;Kim, Chulhyun;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.147-153
    • /
    • 2014
  • In this paper, we present a non-dyadic lens distortion correction model and image restoration method based on local self-similarity to remove jagging and blurring artifacts in the peripheral region of the geometrically corrected image. The proposed method can be applied in various application areas including vehicle real-view cameras, visual surveillance systems, and medical imaging systems.

Background and Local Histogram-Based Object Tracking Approach (도로 상황인식을 위한 배경 및 로컬히스토그램 기반 객체 추적 기법)

  • Kim, Young Hwan;Park, Soon Young;Oh, Il Whan;Choi, Kyoung Ho
    • Spatial Information Research
    • /
    • v.21 no.3
    • /
    • pp.11-19
    • /
    • 2013
  • Compared with traditional video monitoring systems that provide a video-recording function as a main service, an intelligent video monitoring system is capable of extracting/tracking objects and detecting events such as car accidents, traffic congestion, pedestrian detection, and so on. Thus, the object tracking is an essential function for various intelligent video monitoring and surveillance systems. In this paper, we propose a background and local histogram-based object tracking approach for intelligent video monitoring systems. For robust object tracking in a live situation, the result of optical flow and local histogram verification are combined with the result of background subtraction. In the proposed approach, local histogram verification allows the system to track target objects more reliably when the local histogram of LK position is not similar to the previous histogram. Experimental results are provided to show the proposed tracking algorithm is robust in object occlusion and scale change situation.