
Copyright ⓒ 2020 The Korea Navigation Institute 155 www.koni.or.kr pISSN: 1226-9026 eISSN: 2288-842X

응용 및 융합 기술

J. Adv. Navig. Technol. 24(2): 155-162, Apr. 2020

스켈레톤 조인트 매핑을 이용한 딥 러닝 기반 행동 인식 

Deep Learning-based Action Recognition using Skeleton Joints 

Mapping

타 스 님 · 백 중 환*

한국항공대학교 항공전자정보공학부

Nusrat Tasnim · Joong-Hwan Baek*

School of Electronics and Information Engineering, Korea Aerospace University, Gyeonggi-do, 10540, Korea

[요    약]

최근 컴퓨터 비전과 딥러닝 기술의 발전으로 비디오 분석, 영상 감시, 인터렉티브 멀티미디어 및 인간 기계 상호작용 응용을 위

해 인간 행동 인식에 관한 연구가 활발히 진행되고 있다. 많은 연구자에 의해 RGB 영상, 깊이 영상, 스켈레톤 및 관성 데이터를 사

용하여 인간 행동 인식 및 분류를 위해 다양한 기술이 도입되었다. 그러나 스켈레톤 기반 행동 인식은 여전히 인간 기계 상호작용 

분야에서 도전적인 연구 주제이다. 본 논문에서는 동적 이미지라 불리는 시공간 이미지를 생성하기 위해 동작의 종단간 스켈레톤 

조인트 매핑 기법을 제안한다. 행동 클래스 간의 분류를 수행하기 위해 효율적인 심층 컨볼루션 신경망이 고안된다. 제안된 기법

의 성능을 평가하기 위해 공개적으로 액세스 가능한 UTD-MHAD 스켈레톤 데이터 세트를 사용하였다. 실험 결과 제안된 시스템

이 97.45 %의 높은 정확도로 기존 방법보다 성능이 우수함을 보였다. 

[Abstract]

Recently, with the development of computer vision and deep learning technology, research on human action recognition has 

been actively conducted for video analysis, video surveillance, interactive multimedia, and human machine interaction applications. 

Diverse techniques have been introduced for human action understanding and classification by many researchers using RGB image, 

depth image, skeleton and inertial data. However, skeleton-based action discrimination is still a challenging research topic for 

human machine-interaction. In this paper, we propose an end-to-end skeleton joints mapping of action for generating 

spatio-temporal image so-called dynamic image. Then, an efficient deep convolution neural network is devised to perform the 

classification among the action classes. We use publicly accessible UTD-MHAD skeleton dataset for evaluating the performance 

of the proposed method. As a result of the experiment, the proposed system shows better performance than the existing methods 

with high accuracy of 97.45%.
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Ⅰ. Introduction

Digital devices such as computers, smart phones, cameras 

are now becoming an essential part of our daily life. The main 

motive of our research is to provide easy and comfortable 

methods for interacting with those machines. With the 

improvements of the research, the form of interaction with 

those devices has also updated. In previous times, the most 

common form of communication devices was keyboard and 

mouse. Now, we are expecting more reliable and pleasant 

ways to control our machines including computer vision-based 

face, iris, voice, gesture or action recognition. Action 

recognition is considered one of the most demanding ideas for 

contacting with the devices. It is getting more popular among 

the researchers due to its remarkable attributions in numerous 

fields for instance computer vision, image processing, and 

pattern recognition. The invention of low cost, easy to use and 

portable sensors along with some efficient data capturing tools 

provides different modalities of action detection as well as 

classification dataset (RGB, depth, skeleton and inertial) that 

are commonly used these days. A wide range of applications 

like gesture recognition, smart surveillance systems, home 

monitoring, identity recognition, game control, robotics, and 

ease human-machine interaction is spreading rapidly [1],[2]. 

Gesture or action identification plays more importance in this 

extends. A gesture is a form of non-verbal communication that 

is done by hand, fingers, arm or other parts of the human 

body. The hand gesture is the most popular in the areas of 

gesture recognition that can be divided into two board groups 

[3]; static and dynamic hand gestures. The static hand gesture 

mainly focuses on the information of a single image whereas 

the spatial-temporal feature is the major properties of the 

dynamic hand gesture as shown in Fig. 1.

In this paper, we design an algorithm for discriminating 

various types of human actions performed by different parts of 

the human body. Initially, we generate dynamic images using 

for all actions by mapping between different joints information 

of the neighboring frames. The spatio-temporal images along 

with three different views are fed into the networks for 

extracting meaningful features and then fused them to improve 

the classification rates. A modified version of the AlexNet is 

introduced for the purpose of the classification among the 27 

action classes. 

In section II, we try to illustrate some state-of-arts 

techniques related to action recognition and skeleton-based 

action detection and classification. In section III, we describe 

our proposed methodology along with end-to-end skeleton 

joints mapping, data augmentation, and modification of deep 

convolution neural network. Experimental results are shown in 

section IV and finally we include the conclusion in section V.

Ⅱ. Related Works on Action Recognition

An action is a process performed by a group of motions or 

frames that represent what a person is doing for instance walking, 

waving, clapping, etc. Normally, the response of performing an 

action lasts no more than a few seconds. Modern technology gifts 

us a variety of sensors (RGB camera, depth camera, RealSense, 

Microsoft Kinect Sensor) that provide accurate datasets for RGB, 

depth, inertial and skeleton modalities. By using those data, 

researchers are continuing their works for building effective and 

efficient algorithms using various learning approaches mainly 

machine learning and deep learning. Dollar et al. [4] illustrated an 

efficient method using a temporal Gabor filter and a spatial 

Gaussian filter for detecting spatio-temporal interest points 

(STIPs). Then, the authors proposed some other STIP detectors 

and descriptors for improving the results. Wu et al. [5] suggested 

a method by combining both local and global feature 

representations for action recognition. They used temporal local 

feature descriptor and motion descriptor named bag of corrected 

poses (BoCP) and extended motion history image 

(extended-MHI) respectively for their classification. Ahmed et al. 

[6] explained some features like body silhouette feature, optical 

flow feature and combined feature and then used hidden markov 

model (HMM) for action identification. Xia et al. [7] generated 

histograms of 3D joint locations for recognizing human action 

and HMM for classification. Luo et al. [8] discussed a method 

where the temporal pyramid matching approach (ScTPM) was 

used for feature representation and support vector machine 

(SVM) was used for classification. Megavannan et al. [9] 

proposed a feature extraction method for depth images named Hu 

Moments and a silhouette bonding box and used SVM for 

(a) Static Gestures      (b) Dynamic Gesture

그림 1. 손 제스처

Fig. 1. Hand Gestures.
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classification. For action recognition, Trelinski et al. [10] 

proposed a convolution neural network (CNN) model where onto 

an orthogonal Cartesian plane consecutive depth maps and depth 

maps are projected. In [11], Wang et al. described a new method 

from depth maps using weighted hierarchical depth motion maps 

(WHDMM) and three-channel deep convolutional neural 

networks (3ConvNets) for human action recognition. Simonyan et 

al. [12] introduced two-stream convolutional neural networks for 

action recognition. They improved the model in three separate 

ways. At first, they proposed a two-stream ConvNet architecture 

by combining spatial and temporal networks. Secondly, ConvNet 

was trained on multi-frame dense optical flow and finally applied 

this method to different action classification datasets.

Many researchers have spent their valuable time in developing 

algorithms for action recognition based on the skeleton joints 

information in the 3-dimensional coordinate system of the human 

body. In the early days, many handcrafted methods were 

proposed for the extraction of distinctive features from the 

skeleton data of various actions in order to perform the 

recognition. Feature extraction for Depth and RGB sequences 

needs more computation than skeleton data in terms of time and 

computing resources. Most of the existing models used skeleton 

joints information represented in the spatial domain based on 

handcrafted features. Several methods used HMM for capturing 

the temporal information from the skeleton data in the early days. 

After that, deep learning networks like recurrent neural network 

(RNN) or CNN were used largely for skeleton-based action 

recognition in last the few years.

In [13], Li et al. proposed a skeleton transformation module to 

select skeleton joints automatically and designed a CNN with 

7-layers for action classification. In [14], Hussein et al. 

introduced a covariance descriptor to encode the relation between 

joint movement and time and then used SVM for classification. 

Du et al. [15] represented the skeleton joints into a matrix form 

and then converted it into images for the CNN network as input. 

Wang et al. [16] introduced a method named Joints Trajectory 

Map (JTM) where 3D skeleton sequences transformed into 

2-dimensional images and CNN was used for classification. Hou 

et al. [17] illustrated an efficient method for action recognition 

with skeleton data named Skeleton Optical Spectra (SOS) where 

skeleton sequences which contain spatio-temporal information 

into color texture images and trained CNN for action 

classification. Li et al. [18] suggested a method named Joint 

Distance Map (JDM) which consists of a sequence frame to 

capture temporal information with different colors. In [16]-[18], 

Wang et al., Hou et al., and Li et al. represented the temporal 

information using HSB (Hue, Saturation and Brightness ) color 

maps. For more illustration, the details representation is given in 

Fig. 2. In [19], J. Imran et al. suggested data augmentation for 3D 

skeleton joints information named 3-dimensional transformation 

and for classification purposes, RNN was designed named 

Bidirectional gated recurrent unit (BiGRU). 

Ⅲ. Action Recognition using Skeleton 

Joints Mapping 

In this paper, we introduce a new method for action 

recognition using skeleton joints mapping information of 

3-dimensional coordinate systems. First, we convert all the joints 

along XY, YZ, and ZX-axes of every frame in a video into a single 

frame by joining the line between the joints in neighboring 

frames. Then, updated AlexNet is used for discrimination among 

the action classes. In our system, we replace the mapping of 

skeleton joints using the HSB color model in [16]-[18] with the 

connecting lines between adjacent joints of frames using the RGB 

color model. The overall architecture of the proposed system is 

shown in Fig. 3.

The inputs to the system are the spatio-temporal images along 

with three different views (XY, YZ, and ZX-axes) representing 

with red, green and blue as shown in Fig. 3. These inputs are 

passed through the several layers of the networks for extracting 

그림 2. 최신 행동 인식 시스템

Fig. 2. State-of-arts action recognition systems.

그림 3. 제안한 기법의 구조

Fig. 3. Architecture of proposed method.
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meaningful features and then concatenated the outcomes from the 

front, top, and side views. Finally, two fully connected layers 

following with softmax layer are used for deciding the class labels 

of the performed actions. The proposed system consists of three 

basic parts. (1) end-to-end skeleton joints mapping, (2) data 

augmentation, and (3) network modification. The next three 

subsections explain the details representation of the end-to-end 

joints of all the frames in an action, data augmentation techniques, 

and network configurations.

We use UTD Multimodal Human Action Dataset skeleton 

dataset (UTD-MHAD) [20]. In this dataset, the coordinates of 20 

different joints from the human body are extracted along 

XYZ-axes using Microsoft Kinect camera. Twenty different 

skeleton joints with their corresponding names are depicted in 

Fig. 4. 

3-1 End-to-End Skeleton Joints Mapping

While an action is performed, the positions of the joints change 

in different views (along XY, YZ, and ZX-axes) from frame to 

frame in temporal direction over time. We map each joint 

between the neighboring frames by adding a line. Let us consider 

two frames Fij and F(i+1)j where i is the index of two consecutive 

frames and j is the number of joints in each frame. Then the 

equation for joining frame Fij and F(i+1)j in three different views 

(side, top, and front) is given in equation (1) - (3). 

For front view (along XY-axes), the joints map representation 

can be expressed as

        

    
×                   (1)

where i = 1, …, n; n is the length of an action and j = 1, …, m; 

m is the number of joints. 

Similarly, for side (along YZ-axes) and top (along ZX-axes) 

views, the equations can be written as

        

    
×                     (2)

and

         

     
×                   (3)

The main purposed of the spatial representation is to 

discriminate the actions using the texture features that changes 

from frame to frame. In order to explain the facilities of 

spatio-temporal representation, the mapping of eight different 

actions (swipe left, swipe right, wave, clap, arm cross, draw cross, 

draw circle clockwise, bowling) along XY, YZ, and ZX-axes are 

depicted sequentially in Fig. 5.

As shown in Fig. 5, some of the joints change along the 

temporal direction and some joints remain static as the actions are 

performed over time. The first three action classes swipe left, 

swipe right, and wave are performed using joints in the left hand 

in which mostly the joints named shoulder left, elbow left, wrist 

left, and hand left change from frame to frame. The rest of the 

joints remain static or a little change happened. The same things 

can be noticed for actions draw cross and draw circle clockwise 

that are done by using the joints of left hand. Some of the actions 

require both left hand and right hand joints. For actions clapping 

and arm cross needed both hands that make the movement of 

shoulder left, elbow left, wrist left, hand left, shoulder right, 

elbow right, wrist right, and hand right joints. Finally, the last 

action class (bowling) can be accomplished by using all the joints 

of the human body in which most of the joints change a lot. 

3-2 Data Augmentation

Due to the less amount of data, we consider the most popular 

type of data augmentation method for training the proposed 

DCNN models effectively. Since our main focus is to represent 

the joints into spatial maps that are dependent on three different 

views, we perform 3-dimensional rotation [21] along X, Y, and 

Z-axes for making our system view independent. The common 

form of 3-dimensional view rotation are defined in equations 

(4)-(6):






  
 cos sin
 sin cos




                                                (4)

그림 4. 20개의 스켈레톤 조인트

Fig. 4. Twenty skeleton joints.
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





cos  sin
  

sin  cos




                                                 (5)

and









cos sin 
sin cos 
  




                                                (6)

where 
 represent the rotation of data along X, Y, and 

Z-axes with angle .

3-3 Deep Convolution Neural Network

For the discrimination among the action classes, we use a 

modified version of pre-trained AlexNet. We integrate one 

additional block containing convolution, ReLU, pooling and 

replace the input and out layers for fitting our classification 

purpose. There are eight blocks in which first two blocks having 

convolution, ReLU, normalization following by pooling layers. 

The third, fourth and fifth blocks consisting of convolution and 

ReLU layers. The sixth block integrates convolution, ReLU and 

pooling layers. The seventh block consists of fully connected, 

ReLU, normalization following by dropout and the last block 

combines a fully connected and softmax layers. The details of the 

network are shown in Fig. 6. 

The size of the input to the network is 227×227×3 for all the 

views along XY, YZ, and ZX-axes. The input is first passed 

through a convolution layer having 11×11×3 kernel, 96 output 

filters, same padding, and 4 stride that produces output of size 55

×55×96 followed by ReLU and batch normalization. The 

output is passed through a max-pooling layer having 3×3×3 

kernel, and 2 stride that produces output of size 27×27×96. The 

learnable parameters weight, and bias for first convolution layer 

are 11×11×3×96, and 1×1×96 respectively. The above 

operations continue two times and generate the output of size 13

×13×256. Then the generated output passes through the three 

blocks intended to do the same operations of convolution and 

ReLU which outcomes the same size as the input of 13×13×

256. The sixth block takes the results from the fifth block and 

performs convolution, ReLU and max-pooling operations. It 

provides the output of size 6×6×128. Then the generated output 

of size 6×6×128 passes through a fully connected layer 

followed by a ReLU, batch normalization, and dropout layers of 

50% that produces output of size 1×1×128. The second fully 

connected layer produces the final the outputs of size 1×1×27 

followed by a softmax and a classification layer [22].

Ⅳ. Experimental Results and Performance 

Analysis

This section conducts the details of dataset, experimental 

(a) Mapping of eight action along XY-axes (front view)

(c) Mapping of eight action along ZX-axes (top view)

그림 5. 엔드-투-엔드 스켈레톤 조인트 매핑

Fig. 5. End-to-end skeleton joints mapping.

(b) Mapping of eight action along YZ-axes (side view)
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setting, performance evaluation, and comparison. 

4-1 Dataset

We use the  dataset UTD-MHAD of the 3D skeleton dataset 

provided by ESSP Laboratory at the University of Texas at Dallas 

[20]. The dataset is captured using a Microsoft Kinect sensor in 

an indoor environment. It contains 27 different classes of skeleton 

data in which each frame having 20 joints along X, Y, and Z-axes. 

The 27 classes of actions are performed by 8 different subjects 

including 4-females and 4-males. Each class has 32 videos except 

three of them that are corrupted making a total of 861 videos of 

skeleton data. Most of the action is performed by hands like 

swipe left, swipe right, wave, clap, throw, arm cross, basketball 

shoot, draw x, draw circle, draw triangle, bowling, boxing, 

baseball swing, tennis swing, arm curl, tennis serve, push, knock, 

catch, pickup, and throw. Some of the actions are also captured 

by leg such as Jogging, walking, lunging. There are only two 

actions which are acted by the full body. Each person repeated 

each action 4 times in every 27 classes.

We evaluate the method through three different experiments 

along XY, YZ, and ZX-axes and then fuse all of them by 

concatenating 3 views in order to get better results. The 

experimental results are shown in terms of accuracy given by the 

following equation (7):

  


×                                                         (7)

where M is the total correctly predicted observations and N is the 

total number of observations. The details of implementation are 

listed in Table 1. 

We initially assign the learning rate of 0.001 which decreases 

into the half after every fifth epoch. We train our model until the 

completion of the twenty epoch for getting the desired results.

4-2 Performance Evaluation and Comparison

Most of the actions are more classifiable when mapping along 

XY and ZX-axes rather than YZ-axes. Thus we get higher accuracy 

while training and testing the data for XY and ZX-axes. The results 

by combining all three different views are much greater than 

individual views. We get the training results above 95% for all the 

cases. The classification accuracies for testing the trained model 

are given in Table 2. 

By observing the results in Table 2, it is clear that we get 

95.76% classification accuracy for mapping joints along XY-axes 

which is larger in compared to the results of YZ and ZX-axes 

(92.48% and 94.10% respectively). The concatenation of XY, YZ

and ZX-axes have strong tendency to classify the actions that 

shows about 97.45% accuracy. 

For establishing the effectiveness and robustness of the 

proposed method, we compare the results with four related 

methods described in section 2. The results are shown in Table 3.

As described in [19], the classification accuracy was 93.48% 

that is the highest result using the UTD-MHAD skeleton dataset. 

The accuracies of the rest of the methods are less than 90%. We 

get the highest accuracy among all of the existing systems as 

demonstrated earlier section. Thus, it can be concluded that our 

proposed method outperforms among the existing systems.

Ⅴ. Conclusion

Mapping Accuracy

Along XY-axes 95.76%

Along YZ-axes 92.48%

Along ZX-axes 94.10%

Fusion 97.45%

표 2. 분류 결과

Table 2. Classification results. 

Methods Accuracy

JTM [16] 85.81%

SOS [17] 86.97%

JDMs [18] 88.10%

BiGRU [19] 93.48%

Ours 97.45%

표 3. 성능 비교

Table 3. Performance comparison.

그림 6. DCNN 네트워크의 구조

Fig. 6. The DCNN Network Architecture.

Parameters Values

Number of epoch     20

Initial learning rate     0.001

LearningRateDropFactor     0.5

LearningRateDropPeriod     5

표 1. 파라미터 세팅

Table 1. Parameters setting.
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We introduce a noble method for action recognition based on 

skeleton data using a deep convolution neural network. First, the 

mapping of the skeleton joints is done along the temporal 

direction and then discriminates using the DCNN for deciding the 

final class. We perform experiments on three different views 

along XY, YZ, and ZX-axes and then fused all of them to generate 

the final results. The proposed method outperforms over the 

existing systems in case of side, front, top and fused results.
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