• Title/Summary/Keyword: 비닐에스터

Search Result 14, Processing Time 0.029 seconds

Effect of Urethane Modification on the Anti-Bullet Property of Dyneema/vinylester Composites (우레탄 수지 첨가에 의한 다이니마/비닐에스터 복합재료의 방탄효과 향상 연구)

  • Yoon, T.H.;Cha, Y.M.;Yuck, J.I.;Paik, J.G.;Oh, Y.J.;Kim, H.J.
    • Composites Research
    • /
    • v.24 no.6
    • /
    • pp.7-11
    • /
    • 2011
  • Polyurethane oligomers (PUOs) such as UA8297, UP127 and EB8200 were utilized to enhance the anti-bullet property of Dyneema$^{(R)}$/vinylester composites. First, prepregs of PUO and vinylester (XSR10) were prepared via spray coating on Dyneema$^{(R)}$ fabric at 21 % resin content (by volume). In addition, spray coating and film lamination were also carried out with a mixture of XSR10/PUO for selected PUOs. Next, the prepregs were dried at RT for 1-2 h and then at $100^{\circ}C$ for 30 min to remove the solvent and to provide partial cure when necessary. The prepregs were stacked in 24 layers and cured at $120^{\circ}C$ for 5 min under the contact pressure and for additional 25 min at 150 $kg/cm^2$. Finally, the anti-bullet properties of composite samples were evaluated by measuring $V_{50}$ with simulated fragment projectile (SFP, 17 gr). The results showed a 6.5 and 9.0 % increase of $V_{50}$ with UP127 and EB8200, respectively.

Styrene-free Synthesis of Flame-retardant Vinyl Ester Resin Films for Hot-melt Prepreg Process (핫멜트 프리프레그 공정용 난연성 비닐에스터 수지 필름의 무 스티렌 합성)

  • Jiseon, Kang;Minji, Kim;Mongyoung, Huh;Seok Il, Yun
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.412-418
    • /
    • 2022
  • Flame-retardant vinyl ester (VE) resin films were developed from the mixtures of brominated and non-brominated epoxy resins via esterification with methacrylic acid without reactive diluents. The films were used to fabricate carbon fiber (CF) prepregs via a hot melt impregnation process. The viscosity of VE resins suitable for film production was optimized by mixing low-viscosity bisphenol-A and high-viscosity brominated bisphenol-A epoxy precursors. Increasing the bromine content of the cured VE resin further increased the limited oxygen index (LOI) (39%), storage modulus (2.4 GPa) at 25℃ and residual carbonization (16.1%) values compared to non-brominated VE. Manual layup of as-prepared VE prepregs with subsequent curing led to the successful fabrication of CF-reinforced composites with high tensile and flexural strength. The results from the study hold high promise for a styrene-free, environmentally friendly VE composite process in the future.

Flammability Characteristics of Unsaturated Polyesters for FRP (FRP용 불포화폴리에스터 수지들의 연소 특성 연구)

  • 최원종
    • Fire Science and Engineering
    • /
    • v.12 no.4
    • /
    • pp.51-57
    • /
    • 1998
  • The thermal behavior and the flammability characteristics of four different unsaturated polyester resins were studied by performing a series of thermal analysis experiments and laboratory scale fire tests. The results of TGA and DSC reveals that the vinylester type resins have superior thermal performances when compared to the isophthalic type resins. The vinylester type resins formed a network shaped char surface after the thermal decomposition up to 55$0^{\circ}C$. Consequently, the vinylester type resings have shown lower value of burning rate than that of iso type resins. Due to the high level of flammability and toxic smoke emission, the appropriate flame retardant system should be applied to the unsaturated polyester resings.

  • PDF

Cure Behavior, Thermal Stability and Flexural Properties of Unsaturated Polyester/Vinyl Ester Blends (불포화 폴리에스터/비닐에스터 블렌드의 경화 거동, 열안정성 및 굴곡 특성)

  • 이종문;조동환
    • Polymer(Korea)
    • /
    • v.27 no.2
    • /
    • pp.120-128
    • /
    • 2003
  • The effects of catalyst, accelerator and blend composition on the cure behavior of unsaturated polyester resin (UPE), vinyl ester resin (VE) and their blends were studied using differential scanning calorimetry(DSC). The DSC thermograms strongly depend on each variable. The result shows that the small exothermic peak at 115$^{\circ}C$ is due mainly to the UPE component in the UPE/VE blends and the large one at 134~138 $^{\circ}C$ is due mainly to the VE component. The results also indicate that the change of the DSC thermogram measured after each blend was exposed to high temperature 18$0^{\circ}C$ and the fast curing conditions of a few tens seconds provide useful information on understanding the thermal processing of a blend at high speed. The measurements of resin flow time represent that there are three distinct stages of cure in the UPE/VE blends: induction, transition and macro-gelation stages, as similarly reported for UPE by others earlier. The thermal stability and flexural properties of the cured UPE are significantly improved by blending it with the VE, depending on the composition.

A Study on Fire Resistance of Abaca/Vinyl-ester Composites (마닐라 삼/비닐에스터 복합재료의 내화성 연구)

  • Lee, Dong-Woo;Park, Byung-Jin;Song, Jung-Il
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Eco-convivial composites with improved properties are essential to present polymer scenario and can be made easily by replacing partially/completely renewable materials either matrix or reinforcement along with few % of additives. In these investigations, Abaca fabric have been used as reinforcement for manufacturing of Vinyl ester composites through VARTM technique and study the effect of alkali surface treatment of abaca fabric and flame retardant additives i.e., ammonium polyphosphate (APP) with halloysite nano-clay (HNT) on mechanical and flame retardant properties. The results concluded that, surface treatment deceased the hydrophilic nature of fabric and enhanced the interfacial bonding with hydrophobic matrix and eventually increased mechanical properties slightly of developed composites. Similarly, the flame retardancy of the composites improved significantly and increases the burning time by varying the wt% of filler concentration.

Analysis of Cotton/Polyester Fabrics using Pyrolysis Gas Chromatograpy (열분해-GC에 의한 면/폴리에스터 혼방 직물의 분석)

  • 조미숙;김명덕;박성우;윤기준;남재도;이종훈;이영관
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.271-274
    • /
    • 2003
  • A pyrolysis gas-chromatographic method (Py-GC) was utilized for the identification as well as the content measurement of textile materials. Py-GC was applied to natural cotton fiber, synthetic polyester fiber, and their blended fabrics. The characteristic peaks originated from thermally decomposed products were observed, and the area of peak increased with the content of polyester. The products of pyrolized polyester were identified as benzoic acid terephthalic acid, and vinyl benzoic acid, which were characterized by mass spectrometry. This analytic method of offered a quantitative means to identify the content of cotton and polyester.

A Study on Tensile Property of MMT (Montmorillonite) Reinforced Chopped Strand Glass Fiber/Vinylester Composites (MMT(Montmorillonite)를 적용한 Chopped Strand Glass Fiber-Vinylester 복합재의 인장특성 연구)

  • Jung, Yong-Hwa;Ku, Ja-Ho;Lee, Wi-Ro;Rhee, Kyong-Yop
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.619-624
    • /
    • 2012
  • In this study, MMT/fiber/polymer composites were fabricated by impregnating chopped strand glass mat into a vinylester resin mixed with clay. Tensile tests has been performed by using a universal testing machine to determine the effect of MMT addition on the tensile properties of MMT/chopped strand glass fiber/vinylester composites. And some pictures which are magnified cross section of breaking parts are has been taken by using a FE-SEM to confirm the behavior at breaking. The contents ratio of MMT applied in the composites were 0.5, 1.0, 1.5, and 2.0 wt% respectively. It has been found that the tensile strength and elastic modulus of MMT/chopped strand glass fiber/vinylester composites were improved at a proper content of MMT. Tensile strength and elastic modulus were maximized at a content of 1.0 wt% due to most effective dispersion of MMT. On the contrary, the failure strain was increased as MMT content was increased.

Vinyl Addition Polymerization Behavior of Poly(5-hexyl-2-norbornene-co-5-methylester-2-norbornene)s Using Cationic ${\eta}^3$-Allyl Palladium Catalyst (양이온성 ${\eta}^3$-알릴 팔라듐 촉매를 사용한 폴리(5-헥실-2-노보넨-co-5-메틸에스터-2-노보넨)의 비닐 부가 중합 거동)

  • 안재철;박기홍
    • Polymer(Korea)
    • /
    • v.28 no.3
    • /
    • pp.245-252
    • /
    • 2004
  • We synthesized the vinyl addition-type polynorbomene copolymers using two monomers [5-hexyl-2-norbornene (HNB) and 5-methyleste-2-norbornene(MES-NB)] by means of a cationic ${\eta}^3$-allyl palladium catalyst system{[(${\eta}^3$-allyl)palladium(tricyclohexylphosphine) trifluoroacetate] and [lithium tetrakis(pentafluorophenyl) borate ${\cdot}$2.5 etherate]}. The molecular weights and yields of copolynorbomenes polymerized in various conditions were measured to investigate an optimum polymerization conditions to obtain highly ester-functionalized polynorbomenes. As a Pd catalyst content increased, the molecular weights (Mw) of polymers decreased while polymer yields increased. Also, as a Li cocatalyst content increased, the Mw’s and yields of polymers increased at the same time. The Mw’s of copolymers were also controlled by chain transfer agents such as 1-hexone, 1-octene and 1-decene, and we found that longer 1-decene and 1-octene were more efficient to reduce the Mw’s of polynorbornenes than 1-hexene. On the other hand, the content of chain transfer agents did not give influence significantly on polymer yields. From the $^1$H-NMR and GPC analysis of HNB/MES-NB(feed ratio of 40/60 mol%) copolymer, we found that this copolymer had an about 25 mol% of ester portion and a high molecular weight of 270,000.

Effect of Radiation Intensity on Mechanical Properties of UV-cured Vinylester/Unsaturated Polyester Blend System (UV 경화가 비닐에스터와 불포화폴리에스터 블랜드 시스템의 물성 특성에 미치는 영향)

  • Lee, Jae-Rock;Kim, Young-Mi;Park, Soo-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.269-272
    • /
    • 2002
  • UV curing technology becomes important in various sectors of applications due to the high efficiency, environmental protection, and saving of energy. The effect of different proportion of vinylester (VE) and unsaturated polyester (UP) for VE/UP blend system was investigated in context of mechanical properties. The compositions of VE/UP blend were varied within 0:100, 20:80, 40:60, 60:40, 80:20, and 100:0 by weight percent. 1 wt% 1-hydroxy-cyclohexyl-phenyl-ketone was used as photoinitiator. The used intensity of UV light was in the range of $40~70 mW/\textrm{cm}^2$. The flexural strength of vinylester was not sensitive to the intensity of UV light. But the unsaturated polyester was very sensitive to the intensity of UV light. The flexural strength of vinylester was always superior to that of unsaturated polyester. The addition of the vinylester increased the flexural strength of blend system.

  • PDF

Mechanical Properties of Radiation-Curing Vinyl Ester Resin (방사선 경화 비닐에스터 수지의 기계적 특성 연구)

  • Shin, Bum-Sik;Jeun, Joon-Pyo;Kim, Hyun Bin;Kang, Phil-Hyun
    • Journal of Radiation Industry
    • /
    • v.4 no.1
    • /
    • pp.19-23
    • /
    • 2010
  • Vinyl ester (VE) resins, introduced in the late 1960s, have made large strides in reinforced plastics applications as adhesive and matrix materials on their appropriate mechanical performance characteristics in the glassy state. Generally, VE resins are a group of dimethacrylate resins based on bisphenol A type epoxy resin. They exhibit easy handling properties as well as good resistance to most chemical agents due to their mechanical and thermal properties. In this study, the effects of curing methods of vinyl ester resins on gel contents, flexural strength and dynamic mechanical properties were investigated. Thermal curing (room temperature, $80^{\circ}C$) and electron beam curing were used to crosslink a VE resin/styrene complex (65/35 wt%) with methyl ethyl ketone peroxide (MEKPO) as a catalyst and an 8 wt% cobalt naphthenate in styrene solution as a accelerator. For the samples, gel contents as well as flexural strength and dynamic mechanical properties were characterized and compared by soxhlet apparatus, universal testing machine (UTM) and dynamic mechanical analysis (DMA). As a result, the electron-cured VE resin was confirmed as a better condition than those for gel contents, flexural strength and dynamic mechanical properties, respectively.