Browse > Article

Vinyl Addition Polymerization Behavior of Poly(5-hexyl-2-norbornene-co-5-methylester-2-norbornene)s Using Cationic ${\eta}^3$-Allyl Palladium Catalyst  

안재철 (한국과학기술연구원 광전자재료 연구센터)
박기홍 (한국과학기술연구원 광전자재료 연구센터)
Publication Information
Polymer(Korea) / v.28, no.3, 2004 , pp. 245-252 More about this Journal
Abstract
We synthesized the vinyl addition-type polynorbomene copolymers using two monomers [5-hexyl-2-norbornene (HNB) and 5-methyleste-2-norbornene(MES-NB)] by means of a cationic ${\eta}^3$-allyl palladium catalyst system{[(${\eta}^3$-allyl)palladium(tricyclohexylphosphine) trifluoroacetate] and [lithium tetrakis(pentafluorophenyl) borate ${\cdot}$2.5 etherate]}. The molecular weights and yields of copolynorbomenes polymerized in various conditions were measured to investigate an optimum polymerization conditions to obtain highly ester-functionalized polynorbomenes. As a Pd catalyst content increased, the molecular weights (Mw) of polymers decreased while polymer yields increased. Also, as a Li cocatalyst content increased, the Mw’s and yields of polymers increased at the same time. The Mw’s of copolymers were also controlled by chain transfer agents such as 1-hexone, 1-octene and 1-decene, and we found that longer 1-decene and 1-octene were more efficient to reduce the Mw’s of polynorbornenes than 1-hexene. On the other hand, the content of chain transfer agents did not give influence significantly on polymer yields. From the $^1$H-NMR and GPC analysis of HNB/MES-NB(feed ratio of 40/60 mol%) copolymer, we found that this copolymer had an about 25 mol% of ester portion and a high molecular weight of 270,000.
Keywords
cationic Pd catalyst; vinyl addition polymerization; 5-hexyl-2-norbornene; 5-methylester-2-norbornene;
Citations & Related Records

Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 /
[ A.Hennis;J.Polley;G.Long;S.Sen ] / Organometallics   DOI   ScienceOn
2 /
[ T.F.A.Haselwander;W.Heitz;S.A.Krugel;J.H.Wendorff ] / Macromol. Chem. Phys.   DOI   ScienceOn
3 /
[ K.B.Yoon;D.H.Lee ] / Polymer
4 /
[ J.L.Burmaghim;G.S.Girolami ] / Organometallics   DOI   ScienceOn
5 /
[ D.Ruchatz;G.Fink ] / Macromolecules   DOI   ScienceOn
6 /
[ B.L.Goodall;L.H.McIntoshIII;L.F.Rhodes ] / Makromol. Chem. Macromol. Symp.   DOI   ScienceOn
7 /
[ J.C.Ahn;S.H.Park;K.H.Lee;K.H.Park ] / Polymer
8 /
[ J.Lipian;R.A.Mimna;J.C.Fondran;D.Yandulov;R.A.Shick;B.L.Goodall;L.F.Rhodes ] / Macromolecules   DOI   ScienceOn
9 /
[ N.G.Gaylord;A.B.Deshpande;B.M.Mandal;M.Martan ] / J. Macromol. Sci. Chem.
10 /
[ J.P.Kennedy;H.S.Makowski ] / Sci. Chem.
11 /
[ R.R.Schrock;J.Feldman;L.F.Cannizzo;R.H.Grubbs ] / Macromolecules   DOI
12 /
[ W.Kaminsky;A.Noll ] / Polym. Bull.   DOI   ScienceOn
13 /
[ J.H.Lipian;L.F.Rhodes;B.L.Goodall;A.Bell;R.A.Mimna;J.C.Fondran;S.Jayaraman;A.D.Hennis;C.N.Elia;J.D.Polley;A.Sen ] / U.S. Pat., 6455650
14 /
[ V.Heroguez;M.Fontanille ] / J. Polym. Sci.
15 /
[ P.schwab;R.H.Grubbs;J.W.Ziller ] / J. Am. Chem. Soc.