• Title/Summary/Keyword: 붕괴확률

Search Result 97, Processing Time 0.027 seconds

Risk Assessment for a Steel Arch Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 강재아치교의 위험성평가)

  • Cho, Tae-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of an Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses lot this relatively small probability of failure of the complex structure, which is hard to be calculated by Monte-Carlo Simulations or by First Order Second Moment method that can not easily calculate the derivative terms in implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is modeled as a parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts, compared with the previous permutation method or conventional system reliability analysis method.

Probabilistic Risk Assessment of a Cable-Stayed Bridge Based on the Prediction Method for the Combination of Failure Modes (붕괴모드 조합 예측법에 의한 PSC사장교의 위험도평가)

  • Park, Mi-Yun;Cho, Hyo-Nam;Cho, Taejun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.647-657
    • /
    • 2006
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of a Cable Stayed Bridge, which is Prestressed Concrete Bridge consisted of cable and plate girders, based on the method of Working Stress Design and Strength Design. Component reliabilities of cables and girders have been evaluated using the response surface of the design variables at the selected critical sections based on the maximum shear, positive and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses for this relatively small probability of failure of the complex structure, which is hard to obtain through Monte-Carlo Simulations. or through First Order Second Moment Method that can not easily calculate the derivative terms of implicit limit state functions. For the analysis of system reliability, parallel resistance system consisting of cables and plate girder is changed into series connection system and the result of system reliability of total structure is presented. As a system reliability, the upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts compared with the previous permutation method or system reliability analysis method, which calculates upper and lower bound failure probabilities.

Seismic Performance Evaluation of Steel Intermediate Moment Frames with Different Heights (다양한 높이를 가진 철골 중간모멘트골조의 내진성능평가)

  • Kim, Dong Hwi;Park, Yu Jin;Han, Sang Whan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.215-222
    • /
    • 2014
  • The objective of this research is to evaluate the seismic performance of steel intermediate moment frames(IMFs) with different heights. The seimic performance is conducted according to ATC-63. Three-, six, nine- and twelve-story IMFs are designed according to KBC 2009. The connection is modeled to have a drift capacity of 0.02rad, which is required for IMF connections. This study shows that the probability of collapse increases with an increase in the height of the frame. Nine- and twelve-story frames did not satisfy the requirement specified in ATC-63.

Uncertainties Influencing the Collapse Capacity of Steel Moment-Resisting Frames (철골모멘트 골조의 붕괴성능에 영향을 미치는 불확실성 분석)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • In order to exactly evaluate the seismic collapse capacity of a structure, probabilistic approach is required by considering uncertainties related to its structural properties and ground motion. Regardless of the types of uncertainties, they influence on the seismic response of a structures and their effects are required to be estimated. An incremental dynamic analysis(IDA) is useful to investigate uncertainty-propagation due to ground motion. In this study, a 3-story steel moment-resisting frame is selected for a prototype frame and analyzed using the IDA. The uncertainty-propagation is assessed with categorized parameters representing epistemic uncertainties, such as the seismic weight, the inherent damping, the yield strength, and the elastic modulus. To do this, the influence of the uncertainty-propagation to the seismic collapse capacity of the prototype frame is probabilistically evaluated using the incremental dynamic analyses based on the Monte-Carlo simulation sampling with the Latin hypercube method. Of various parameters related to epistemic uncertainty-propagation, the inherent damping is investigated to be the most influential parameter on the seismic collapse capacity of the prototype frame.

Probabilistic Stability and Sensitivity Analysis for a Failed Rock Slope using a Monte Carlo Simulation (몬테카를로시뮬레이션 기법을 이용한 붕괴 암반사면의 확률론적 안정해석 및 민감도 분석)

  • Park, Sung-Wook;Park, Hyuck-Jin
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.437-447
    • /
    • 2010
  • A probabilistic analysis of slope stability is an appropriate solution in dealing with uncertainty in problems related to engineering geology. In this study, a Monte Carlo simulation was performed to evaluate the performance function that is Barton's equation. A large number of randomly generated values were obtained for random variables, and the performance function was calculated repeatedly using randomly generated values. A previous study provided information of slope geometry and the random characteristics of random variables such as JRC and JCS. The present approach was adopted to analyze two failed slopes. The probabilities of failure were evaluated for each slope, and sensitivity analysis was performed to assess the influence of each random variable on the probability of failure. The analysis results were then compared with the results of a deterministic analysis, indicating that the probabilistic analysis yielded reliable results.

Probabilistic Study of Surface Subsidence due to the Collapse of Underground Void during Earthquakes (지진에 따른 지하공동의 붕괴로 인한 지표면 함몰에 대한 확률론적 연구)

  • Kim, Young Soo;Lee, Chin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.4
    • /
    • pp.217-226
    • /
    • 1993
  • This study is related to the surface subsidence due to the collapse of a underground void during earthquakes. The amount of the settlement due to the collapse of a underground void will depend on the depth of the void, the initial condition of unit weight of sand, the size and type of foundation, the strength of earthquake, the size of a void, etc. The purpose of the paper is to estimate the amount of the subsidence, analyse the factors affecting the subsidence, and develop a program determining the probability of the damages to structures in terms of absolute and differential settlement and rotational settlement. On the base of the results obtained in this study, when the depth of a void is constant and the width of the void increases, the change of the subsidence factor due to the angle of internal friction and the actual effective factor of the void become smaller than that due to the unit weight of sand deposits. In the same condition, the probabilities of damages due to the absolute and differential settlement increase, and those due to the rotational settlement decrease.

  • PDF

Risk Assessment of Slopes using Failure Probability in Korean Railways (파괴확률을 이용한 철도절개면의 위험도 평가)

  • Kim, Hyun-Ki;Kim, Soo-Sam
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.2
    • /
    • pp.158-164
    • /
    • 2008
  • Abstract Infiltration of rainfall that may lead to reduce resistance force due to reduction of matric suction and to increase driving force due to increase of self weight makes the slope fail. There are many specifications to make slope stable based on factor of safety. Although result of slope stability analysis satisfy the specifications, slope failures triggered by rainfall are frequently occurred in reality because slope stability analysis cannot consider uncertainty of each soil properties. This is why conventional analysis has limitation and development of alternative method is needed. So it is suggested to adopt the reliability analysis rather than design based on factor of safety into designing safer structure. Through the evaluation of handicaps for the factor of safety based design, calculation of soil properties by site investigation, and reliability analysis considering distribution of each soil properties, distribution of failure probability in railway slope is obtained. Then, Risk assessment of slopes in Korean railway is executed from the results. Damage loss and incoming loss are considered as the loss. Using these results, it is possible to make proper countermeasure or efficient maintenance.

Analysis of Influence for Breach Flow According to Asymmetry of Breach Cross-section (제방붕괴 형상의 비대칭성에 따른 붕괴흐름의 영향 분석)

  • Kim, Sooyoung;Choi, Seo-hye;Lee, Seung Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.557-565
    • /
    • 2016
  • The risk of collapse in hydraulic structures has become more elevated, due to the increased probability and scale of flooding caused by global warming and the resulting abnormal climatic conditions. When a levee, a typical hydraulic structure, breaks, an enormous breach flow pours into the floodplain and much flood damage then occurs. It is important to accurately calculate the breach discharge in order to predict this damage. In this study, the variation of the breach discharge with the asymmetry in the cross-section of the levee breach was analyzed. Through hydraulic experiments, the cross-section of the breach was analyzed during the collapse using the BASD (Bilateral ASymmetry Degree), which was developed to measure the degree of asymmetry. The relationship of the breach discharge was identified using the BASD. Additionally, the variation of the breach flow measured by the BASD was investigated through a 3-D numerical analysis under the same flow conditions as those in the experiment. It was found that the assumption of a rectangular breach cross-section, which is generally used for the estimation of the inundation area, can cause the breach discharge to be overestimated. According to the BASD, the breach flow is decreased by the interference effect in the breach section of the levee. If the breach flow is calculated while considering the BASD in the numerical analysis of the flooding, it is expected that the predicted inundation area can be estimated accurately.

A Random Walk Model for Estimating Debris Flow Damage Range (랜덤워크 모델을 이용한 토석류 산사태 피해범위 산정기법 제안)

  • Young-Suk Song;Min-Sun Lee
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.201-211
    • /
    • 2023
  • This study investigated the damage range of the debris flow to predict the amount of collapsed soil in a landslide event. The height of the collapsed slope and the distance traveled by the collapsed soil were used to predict the total trajectory distance using a random walk model. Debris flow trajectory probabilities were calculated through 10,000 Monte Carlo simulations and were used to calculate the damage range as measured from the landslide scar to its toe. Compiled information on debris flows that occurred in the Cheonwangbong area of Mt. Jirisan was used to test the accuracy of the proposed random walk model in estimating the damage range of debris flow. Results of the comparison reveal that the proposed model shows reasonable accuracy in estimating the damage range of debris flow and that using 10 m × 10 m cells allows the damage range to be reproduced with satisfactory precision.

Analysis of Groundwater Level Change at Slops considering Regional Precipitation and Soil Characteristic (지역별 강우 및 토양특성을 고려한 경사면에서의 지하수위 변동분석)

  • Lee, Il-Ju;Choi, Byung-Kyu;Kim, Kyoung-Wook;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1934-1938
    • /
    • 2009
  • 본 연구에서는 과거부터 다양한 형태로 발생한 산사태의 주요 원인을 파악하고 우리나라에서 산사태 발생을 유발시키는 요인과 그 특성을 분석하기 위해 현재까지 발생한 산사태의 붕괴 지역을 조사하고 주요 원인을 강우, 토양, 침투, 경사의 4가지 경우로 나누어 이에 대한 지역별 특성을 조사 분석하였다. 분석방법으로는 지역별 확률 강우량 산정 후, 이를 토대로 침투량과 유출량을 분리하여 경사면에서의 침투거동과 지하수위 변화양상을 살펴보기 위해 SEEP/W를 이용하여 지역별 산사태 붕괴원인을 분석하였다. 그 결과, 일부지역을 제외한 대부분 지역에서 강우량이 증가함에 따라 지하수위가 선형적으로 증가하는 것으로 나타났으며, 이러한 피해형태는 사면의 위치별로 다르게 나타고 있어 지역별로 산사태 붕괴원인에 따른 적합한 대처가 필요한 것으로 분석되었다.

  • PDF