• Title/Summary/Keyword: 붕괴성능평가

Search Result 147, Processing Time 0.024 seconds

Dynamic Analysis of Structures with Continuous Transverse Reinforcement Applied (연속 횡방향철근을 적용한 구조물의 동적 해석)

  • Cho, Kyung Hun;Han, Soo Ho;Lee, Jung Bin;Kim, Sung Bo;Kim, Jang Jay Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.277-285
    • /
    • 2023
  • Recently, as the magnitude and frequency of earthquakes increases, research is needed to increase the ductility of the columns in order to prevent the collapse of structures. In this study, to evaluate the performance of columns reinforced with continuous transverse reinforcing bars, the FE model for the dynamic analysis of structures reinforced with continuous transverse reinforcing bars for circular and rectangular columns is to be verified using the results of uniaxial compression experiments in the previous study. As a result, the experimental value of the column reinforced with continuous transverse reinforcement and the result value related to the dynamic analysis showed similar behavior, and the reliability was high. As a result of the analysis, the usability of the rectangular column reinforced with continuous lateral reinforcing bars was confirmed because the dissipated energy performance of the columns reinforced with spiral reinforcing bars was higher than that of the columns reinforced with band reinforcing bars.

Durability Characterization of Larch Wood (Larix kaempferi) used for Woody Erosion Control Dam (목재사방댐에 사용된 낙엽송 부재의 내구성 평가)

  • Jang, Jae-Hyuk;Kim, Jong-Ho;Chun, Kun-Woo;Kwon, Gu-Joong;Hwang, Won-Joong;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.310-317
    • /
    • 2013
  • This research has been carried out to evaluate the durability characterization of larch wood used for woody erosion control dam. Wood deterioration and strength properties were analyzed according to installed position and duration. Optical and scanning electron microscope were used for examining wood deterioration, and an universal testing machine was applied for compression and shearing strength. As a result, deposited wood in water was maintained almost similar anatomical and physical properties compare to normal wood, even though it was used for seven years. In non-deposited wood which was installed on the side of the dam, heartwood did not show any significant change during seven years, while sapwood was significantly deteriorated in five years. Also, strength properties of sapwood were significantly decreased according to installed duration whereas, degree of decrease in heartwood were relatively smaller than that in sapwood.

Alternative Design of Mega Structural Members of a Super-tall Building using 800MPa Grade High-performance Steel Plate (800MPa급 고성능 강재 적용한 초고층 메가 부재 대안설계)

  • Cho, So Hoon;Kim, Do Hwan;Kim, Jin Won;Lee, Seung Eun;Kim, Jin Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.299-309
    • /
    • 2014
  • HSA800 is a new high strength steel (HSS) plate for building structures developed by POSCO and RIST in 2011. It has upper and lower bounds for yield ($F_y$) and tensile ($F_u$) strength as of 650-770MPa and 800-950MPa, respectively, with yield ratio ($F_y/F_u$) limit as of 0.85 which make steel quality more reliable and enhance the seismic resistance of structures. As made by TMCP, it has a good weldability without increasing carbon percentage. The objective of this study is to provide alternative design of mega-structural members of the Lotte World Tower (555m, 123 story), a first super-tall building in Korea, using HSS considering structural safety, constructability, and cost-effectiveness. Steel outrigger trusses, belt-trusses and steel exterior columns were selected and analyzed to evaluate the structural performance between original and alternative designs using HSS. The results show that HSS can be applied to the members which do not affect lateral stiffness of a building and, in this study, approximately 1100tons of steel were saved. It implies that HSS can save overall construction costs - manufacturing, delivery, and erection costs - by reducing mega structural member size. HSA800 was very first applied to the Lotte World Tower based on the results of this study.

Evaluation of Performance of Expansive Material for Restoration of Underground Cavity and Stress Release Zone (지하공동 및 이완영역 복구를 위한 팽창성 재료의 성능 평가)

  • Lee, Kicheol;Choi, Byeong-Hyun;Bak, Jongho;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.141-155
    • /
    • 2018
  • Recently, the number of ground subsidence resulting from underground cavity has been increased. Accordingly, the importance of restoration of stress release zone around the underground cavity has been emphasized. The stress release zone is composed of low density soils having extremely low stiffness and degree of compaction, which can lead to additional cavity expansion and collapse of overlying ground. Therefore, in this study, the suitability of restoration method of underground cavity using expansive material for reinforcement of stress release zone around the cavity is verified. The basic physical properties and expansion characteristics of the expansive material were examined. The experiment equipment capable simulating of stress release zone was developed and is used to investigate the effect of expanding material on stress release zone. The stress release zone was simulated using the spring in numerical analysis. The factors of the volume ratio of the underground cavity to the expansion material, the degree of stress relaxation, and the shape of the cavity were varied in numerical simulations, and the behavior of stress release zone was analyzed based on the numerical analysis results. Analysis variables are factors that affect each other. Also, filling of underground cavity and capacity of restoration of stress release zone were confirmed when the expansive material was inserted into underground cavity.

Performance Test of Portable Hand-Held HPGe Detector Prototype for Safeguard Inspection (안전조치 사찰을 위한 휴대형 HPGe 검출기 시제품 성능평가 실험)

  • Kwak, Sung-Woo;Ahn, Gil Hoon;Park, Iljin;Ham, Young Soo;Dreyer, Jonathan
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.1
    • /
    • pp.54-60
    • /
    • 2014
  • IAEA has employed various types of radiation detectors - HPGe, NaI, CZT - for accountancy of nuclear material. Among them, HPGe has been mainly used in verification activities required for high accuracy. Due to its essential cooling component(a liquid-nitrogen cooling or a mechanical cooling system), it is large and heavy and needs long cooling time before use. New hand-held portable HPGe has been developed to address such problems. This paper deals with results of performance evaluation test of the new hand-held portable HPGe prototype which was used during IAEA's inspection activities. Radioactive spectra obtained with the new portable HPGe showed different characteristics depending on types and enrichments of nuclear materials inspected. Also, Gamma-rays from daughter radioisotopes in the decay series of $^{235}U$ and $^{238}U$ and characteristic x-rays from uranium were able to be remarkably separated from other peaks in the spectra. A relative error of enrichment measured by the new portable HPGe was in the range of 9 to 27%. The enrichment measurement results didn't meet partially requirement of IAEA because of a small size of a radiation sensing material. This problem might be solved through a further study. This paper discusses how to determine enrichment of nuclear material as well as how to apply the new hand-held portable HPGe to safeguard inspection. There have been few papers to deal with IAEA inspection activity in Korea to verify accountancy of nuclear material in national nuclear facilities. This paper would contribute to analyzing results of safeguards inspection. Also, it is expected that things discussed about further improvement of a radiation detector would make contribution to development of a radiation detector in the related field.

Review of Erosion and Piping in Compacted Bentonite Buffers Considering Buffer-Rock Interactions and Deduction of Influencing Factors (완충재-근계암반 상호작용을 고려한 압축 벤토나이트 완충재 침식 및 파이핑 연구 현황 및 주요 영향인자 도출)

  • Hong, Chang-Ho;Kim, Ji-Won;Kim, Jin-Seop;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.32 no.1
    • /
    • pp.30-58
    • /
    • 2022
  • The deep geological repository for high-level radioactive waste disposal is a multi barrier system comprised of engineered barriers and a natural barrier. The long-term integrity of the deep geological repository is affected by the coupled interactions between the individual barrier components. Erosion and piping phenomena in the compacted bentonite buffer due to buffer-rock interactions results in the removal of bentonite particles via groundwater flow and can negatively impact the integrity and performance of the buffer. Rapid groundwater inflow at the early stages of disposal can lead to piping in the bentonite buffer due to the buildup of pore water pressure. The physiochemical processes between the bentonite buffer and groundwater lead to bentonite swelling and gelation, resulting in bentonite erosion from the buffer surface. Hence, the evaluation of erosion and piping occurrence and its effects on the integrity of the bentonite buffer is crucial in determining the long-term integrity of the deep geological repository. Previous studies on bentonite erosion and piping failed to consider the complex coupled thermo-hydro-mechanical-chemical behavior of bentonite-groundwater interactions and lacked a comprehensive model that can consider the complex phenomena observed from the experimental tests. In this technical note, previous studies on the mechanisms, lab-scale experiments and numerical modeling of bentonite buffer erosion and piping are introduced, and the future expected challenges in the investigation of bentonite buffer erosion and piping are summarized.

Structure Analysis and Scale Model Test for Strength Performance Evaluation of Submersible Mooring Pulley Installed on Floating Offshore Wind Turbine (부유식 해상풍력발전기용 반잠수식 계류 풀리의 강도 성능평가를 위한 구조해석과 축소 모형시험)

  • Chang-Yong Song
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.5
    • /
    • pp.479-487
    • /
    • 2023
  • Recently, the destructive power of typhoons is continuously increasing owing to global warming. In a situation where the installation of floating wind turbines is increasing worldwide, concerns about the huge loss and collapse of floating offshore wind turbines owing to strong typhoons are deepening. A new type of disconnectable mooring system must be developed for the safe operation of floating offshore wind turbines. A new submersible mooring pulley considered in this study is devised to more easily attach or detach the floating of shore wind turbine with mooring lines compared with other disconnectable mooring apparatuses. To investigate the structural safety of the initial design of submersible mooring pulley that can be applied to an 8MW-class floating type offshore wind turbine, scale-down structural models were developed using a 3-D printer and structural tests were performed on the models. For the structural tests of the scale-down models, tensile specimens of acrylonitrile butadiene styrene material that was used in the 3-D printing were prepared, and the material properties were evaluated by conducting the tensile tests. The finite element analysis (FEA) of submersible mooring pulley was performed by applying the material properties obtained from the tensile tests and the same load and boundary conditions as in the scale-down model structural tests. Through the FEA, the structural weak parts on the submersible mooring pulley were reviewed. The structural model tests were conducted considering the main load conditions of submersible mooring pulley, and the FEA and test results were compared for the locations that exceeded the maximum tensile stress of the material. The results of the FEA and structural model tests indicated that the connection structure of the body and the wheel was weak in operating conditions and that of the body and the chain stopper was weak in mooring conditions. The results of this study enabled to experimentally verify the structural safety of the initial design of submersible mooring pulley. The study results can be usefully used to improve the structural strength of submersible mooring pulley in a detailed design stage.