• Title/Summary/Keyword: 분화

Search Result 4,031, Processing Time 0.034 seconds

Differentiation of Hanwoo Intramuscular Preadipocytes (한우 Intramuscular Preadipocyte의 분화)

  • Lee, S.M.;Jeong, Y.H.;Hwang, S.H.;Park, H.Y.;Yoon, D.H.;Moon, S.J.;Chung, E.R.;Kang, M.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.6
    • /
    • pp.913-918
    • /
    • 2005
  • The development of marbling in cattle is closely associated with an increase in adipocyte size and number within muscle. The adipose precursor cells have the capacity to differentiate into adipocytes within the muscle during the formation of marbling. In this studies, we established the cell culture system for differentiation of intramuscular preadipocyte isolated from the sirloin of Hanwoo aged 12 months. The intramuscular preadipocyte cells exhibited a fibroblastic appearance and differentiated into adipocytes by treating confluent cells with differentiation medium containing insulin, dexamethasone, and troglitazone. When intramuscular preadipocyte cells were differentiated at 18 day, the triglyceride concentration was higher than control cells. Moreover, the thiazolidinedione treatment increased adipogenesis. RT-PCR analysis confirmed the significant expression of PPARγ mRNA during adipocyte differentiation. In conclution, our culture system used in this study allowed intramuscular preadipocyte cells to differentiated into adipocytes and intramuscular preadipocyte cells may be useful in the further study of differentiation mechanism of adipocytes in Hanwoo.

Roles of miR-128 in Myogenic Differentiation and Insulin Signaling in Rat L6 Myoblasts (쥐L6 근원세포에서 miR-128의 근육세포 분화와 인슐린신호에서의 역할)

  • Oh, Myung-Ju;Kim, So-Hyeon;Kim, Ji-Hyun;Jhun, Byung H.
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.772-782
    • /
    • 2020
  • Skeletal muscle differentiation or myogenesis is important to maintain muscle mass and metabolic homeostasis. Muscle-specific microRNAs (miRNAs) are known to play a critical role in skeletal myogenic differentiation. In this study, we examined the expression profiling of miRNAs during myogenic differentiation in rat L6 myoblasts using rat miRNA microarrays. We identified the upregulated expression of miR-128 as well as several well-known myogenic miRNAs, including miR-1, miR-133b, and miR-206. We additionally confirmed the increased expression of miR-128 observed on microarray through quantitative real-time PCR (qRT-PCR), which showed similarly upregulated expression of both primary miR-128 and mature miR-128, consistent with the microarray findings. Furthermore, transfection of miR-128 into rat L6 myoblasts induced gene expression of myogenic markers such as muscle creatine kinase (MCK), myogenin, and myosin heavy chain (MHC). Protein expression of MHC was increased as well. Inhibition of miR-128 by inhibitory peptide nucleic acids (PNAs) blocked the expression of those myogenic markers. In addition, the transfection of miR-128 into rat L6 myoblasts enhanced the phosphorylation of Erk and Akt proteins stimulated by insulin, while simultaneously reversing the inhibited phosphorylation of Erk and Akt due to insulin resistance. These findings suggest that miR-128 may play important roles in myogenic differentiation and insulin signaling.

The mechanism of chondrogenesis inhibition by X-Irradiation (X선에 의한 연골세포 분화 억제 작용경로)

  • Ha, Jong-Yeol;Lim, Young-Bin;Lee, Yoon-Ae;Sonn, Jong-Kyung;Lee, Joon-Il
    • Journal of radiological science and technology
    • /
    • v.26 no.1
    • /
    • pp.91-97
    • /
    • 2003
  • The purpose of this study is to investigate the mechanism of inhibition of chondrogenic differentiation by X-irradiation. Cultures of chick limb bud mesenchymal cells were exposed to various dose of X-ray and chondrogenesis was examined. X-irradiation inhibited accumulation of proteoglycan based on the observation of alcian blue staining and expression of chondorcyte specific-type II collagen. X-irradiation also inhibited expression of protein kinase $C{\alpha}$ while expression of $PKC{\lambda}({\iota}),\;{\varepsilon}$ was not altered. Expression of Erk-1 was not changed by X-irradiation but phosphorylation of Erk-1 was increased. In addition, inhibition of Erk-1 phosphorylation by PD98059 overcame inhibitory effect of X-irradiation on the chondrogenic differentiation. PNA staining data showed that X-irradiation inhibited cellular aggregation. Taken together, these results suggest that X-irradiation inhibits chondrogenic differentiation by inhibiting cellular aggregation and suppressing expression of $PKC{\alpha}$ and promoting phosphorylation of Erk-1. In addition to above pathway, our results also suggest that X-irradiation may exerts its inhibitory effect by another signaling pathways.

  • PDF

Effects of Gelling Agents and Growth Regulation on Rice Anther Culture (배지 응고제와 생장조절제가 벼 약배양에 미치는 영향)

  • 이중호;이승엽
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.1
    • /
    • pp.35-39
    • /
    • 1995
  • In order to investigate the effects of gelling agent on rice anther culture, anthers of rice (Japonica cv Daecheongbyeo) were cultured on N$_{6}$ media supplemented with 0.8, 1.2 or 1.6% Junsei agar and 05, 0.4, 0.6, 0.8 or 1.0% Gelrite (Phytagel, Sigma). On Junsei agar media, the frequency of callus induction was decreased in proportion to agar concentration. The frequency of callus induction was more increased as 67.6% and 54.8% in media containing 0.4 and 0.6% Gelrite than in agar media. The frequency of plant regeneration and spontaneous doubled-diploid was directly proportional to Junsei agar and Gelrite concentration. The number of green and spontaneous doubled diploid plant was highest on 0.6% Gelrite medium. In order to optimize the concentration of growth regulators for the callus induction medium containing 0.6% Gelrite, anthers were cultured on N$_{6}$ media supplemented with 2mg/L NAA, 2 mg/L 2,4-D, 1mg/L NAA and 1mg/L 2, 4-D, or 1mg/L NAA, 1mg/L 2,4-D and 0.5mg/L kinetin. The maximum frequency of callus induction and plant regeneration was obtained from the medium supplemented with 2 mg/L NAA and 0.6% Gelrite. In conclusion the induction of embryogenic callus, the frequency of plant regeneration and in vivo chromosome doubling was more effective in Gelrite media than in Junsei agar media.dia.

  • PDF

Regeneration Ability in Germplasms of Perilla frutescens (들깨 및 차조기 유전자원의 재분화능)

  • Lee, Chan-Ok;Li, Cheng Hao;Lim, Jung-Dae;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.12 no.6
    • /
    • pp.500-507
    • /
    • 2004
  • The establishment of an efficient protocol of plant regeneration from leaf explant cultures of Perilla spp. is reported. Regenerated shoots were obtained from leaf explant cultures on solid MS medium containing different concentrations of cytokinins and auxin. The effect of cytokonin and auxin differed depending on each acession. The combination treatments of high level of cytokinin and low level of auxin was more effective for plant regeneration in Perilla frutescens. The best concentration of sucrose was 3% for regeneration. Of spermidine, spermin and putrescine. treatments, the most effective treatment for plant regeneration was $10\;mg/{\ell}$ spermidine.

The Effects of Self-Differentiation and Ego-Resilience on Service Maladjustment Behaviors of Social Service Agent (사회복무요원의 자아분화와 자아탄력성이 복무 부적응행동에 미치는 영향)

  • Lee, Kyung-hee;Park, Jung-yoone
    • The Journal of the Korea Contents Association
    • /
    • v.18 no.4
    • /
    • pp.60-76
    • /
    • 2018
  • The objective of this study was to determine the effects of self-differentiation and ego-resilience on service maladjustment behaviors of Social Service Agent. To achieve this, we chose these research questions. To verify these research questions, data were collected by distributing 470 questionnaires to Social Service Agent serving in service organizations located in Seoul. Four hundred twenty-seven surveys were used for statistical analysis. The results of this study are as follows: First, Social Service Agents were shown to generally adjust well to service, as self-differentiation and ego-resilience were slightly higher than the median, while service maladjustment behavior was slightly lower than the median. Second, when the effects of sociodemographic characteristics, self-differentiation and ego-resilience on service maladjustment behavior were studied, all values of sociodemographic characteristics, self-differentiation and ego-resilience affected all lower factors of service maladjustment behavior with significance. For social withdrawal, the effectiveness of interpersonal relations, optimistic attitude, and the degree of family regression had a negative correlation, and emotional divorce, education level, and term of service had a positive correlation. The degree of family regression, anger management, and cognitive function vs. emotional function had a negative correlation with hyperactivity while self unity had a positive one. Family regression, cognitive function vs. emotional function, anger management, and family's economic level negatively correlated with aggression. Family regression, optimistic attitude, cognitive function vs. emotional function, family's economic level and term of service had a negative correlation with obsession and compulsion.

Inhibitory Effect of Lactic Acid Bacteria-fermented Chrysanthemum indicum L. on Adipocyte Differentiation through Hedgehog Signaling (감국의 유산균 발효물이 hedgehog 신호를 통한 지방구세포 분화 억제효과)

  • Choi, Jae Young;Lim, Jong Seok;Sim, Bo Ram;Yang, Yung Hun
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.532-541
    • /
    • 2020
  • In this study, we describe the inhibition of adipocyte differentiation by the lactic acid bacteria (LAB) fermentation product of Chrysanthemum indicum L. (CI) extract to control obesity. Preparation of LAB-fermented products was performed to overcome the cytotoxicity of CI extract. During fermentation and 3T3-L1 cell line experiment, cytotoxicity was not induced in the CI fermentation products over 1 day in culture. Fermented materials from highly proliferative cultures were selected for treatment of 3T3-L1 cells and for comparison with unfermented control groups. Cell survival and undifferentiated cell populations were decreased differentiation population in all experimental groups compared with controls, as measured using fluorescence-activated cell sorting analysis. Akt pathway activity increased upon treatment with these fermented extracts in 3T3-L1 cells. Gli2 depleted at the protein level in association with adipocyte differentiation. LAB KCTC 3115- and 3109-fermented extract treatment caused controlled Gli2 protein accumulation. Moreover, KCTC 3115 and 3109 were found to reduce C/EBPα and FAS was depleted, whereas pACC was increased at the protein level upon treatment with the fermentation products of each of the four LAB used in this study. With Lactococcus lactis subsp. lactis KCTC 3115 fermentation, the regulation of adipose differentiation and hedgehog signaling were also suppressed, thereby inhibiting the differentiation of progenitor cells. The basis for the activation of hedgehog signaling may provide insights into the treatment of obesity and the inhibition of adipocyte differentiation.

Isolation and Functional Analysis of the silA Gene That Controls Sexual Development in Response to Light in Aspergillus nidulans (Aspergillus nidulans의 광 조건하 유성분화에 관여하는 silA 유전자의 분리 및 기능분석)

  • Han, Sang-Yong;Ko, Jin-A;Kim, Jong-Hak;Han, Kyu-Yong;Han, Kap-Hoon;Han, Dong-Min
    • The Korean Journal of Mycology
    • /
    • v.36 no.2
    • /
    • pp.189-195
    • /
    • 2008
  • When a homothallic ascomycete Aspergillus nidulans is exposed to visible light, cleistothecial development is inhibited. The light response of development in A. nidulans implies the existence of delicate regulation process including reception and translocation of light signaling and determination of development. Previously, mutants that could develop cleistothecia even in the presence of relatively intensive visible light were isolated and several complementation groups were identified. A gene that was able to complement the silA98 mutation, which was responsible for preferred cleistothecia development under visible light, was isolated from AMA-NotI genomic library. The silA gene retained in the 4.3 kb recovered genomic library DNA has an open reading frame (ORF) consisted of 2,388 bp nucleotides, interrupted by 3 introns and consequently encoding 795 amino acids. The putative SilA carries a ${Zn_2}{Cys_6}$ binuclear cluster motif at N terminus and shows high amino acid sequence similarity to Aro80p of Saccharomyces cerevisiae. Deletion mutants of silA showed a strong induction of sexual development under visible light, indicating that SilA is involved in the negative regulation of sexual development in response to the light.

Isolation and Characterization of Aspergillus nidulans Mutants Which Undergo Sexual Development in Light Exposure (빛의 존재하에서도 유성분화를 하는 Aspergillus nidulans의 돌연변이체 분리 및 분석)

  • Min, Jung-Youl;Kim, Hye-Ryun;Han, Kap-Hoon;Han, Dong-Min
    • Korean Journal of Microbiology
    • /
    • v.43 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • In a homothallic ascomycete Aspergillus nidulans, sexual development is inhibited by various environmental stresses such as acetate medium, visible light and high osmolarity conditions. In order to study the genes involved in this stress-related regulatory network, we first attempted to isolate mutants that could develop cleistothecia even in the presence of any of those stresses including intensive visible light. More than 10,000 mutants were screened and 167 mutants were analyzed. Among them, 152 mutants underwent sexual development under the single stress condition of either high osmotic, high acetate or light condition but no sexual development in more than two stresses. Six mutants can produce cleistothecia under light or acetate stress but not in salt stress. Moreover, 6 mutants showed the ability to develop cleistothecia under the light but not under the acetate or osmo-stress. The mutants were revealed to have independent single gene mutation and grouped into different complementation groups (silA-F). The mutant alleles were all recessive to that of wild type. The light responsiveness of development implies the existence of delicate regulation process including reception and translocation of light signaling and determination of development.

Efficient Callus Culture and Plant Regeneration from Mature Seed of Tall Fescue (Festuca arundinacea Schreb.) (톨 페스큐의 성숙종자로부터 효율적인 캘러스 배양 및 식물체 재분화)

  • Kim Do-Hyun;Lee Dong-Gi;Lee Sang-Hoon;Woo Hyun-Sook;Lee Ki-Won;Choi Myung-Suk;Lee Byung-Hyun
    • Journal of Plant Biotechnology
    • /
    • v.32 no.3
    • /
    • pp.187-193
    • /
    • 2005
  • In an effort to optimize tissue culture conditions for genetic transformation of tall fescue (Festuca arundinacea Schreb.), an efficient plant regeneration system from seed-derived calli was established. MS medium containing 6 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) and 0.1 mg/L benzyladenine (BA) were optimal for embryogenic callus formation from mature seed and had a strong effect on successive plant regeneration. The plant regeneration frequency above 50% was observed when embryogenic calli induced in this medium were transferred to N6 medium supplemented with 1 mg/L 2,4-D and 3 mg/L BA. Among several basic media, MS and N6 medium were optimal for callus induction and plant regeneration, respectively. 'Kentucky-31' showed to have high frequencies of embryogenic callus induction and plant regeneration up to 58.3 and 50%, respectively. Addition of sucrose to the regeneration medium as a carbon source increased regeneration frequency up to 55%. A short tissue culture period and high-frequency regeneration system established in this study will be useful for molecular breeding of tall fescue through genetic transformation.