DOI QR코드

DOI QR Code

Isolation and Functional Analysis of the silA Gene That Controls Sexual Development in Response to Light in Aspergillus nidulans

Aspergillus nidulans의 광 조건하 유성분화에 관여하는 silA 유전자의 분리 및 기능분석

  • Han, Sang-Yong (Division of Life Sciences, Wonkwang University) ;
  • Ko, Jin-A (Division of Life Sciences, Wonkwang University) ;
  • Kim, Jong-Hak (Division of Life Sciences, Wonkwang University) ;
  • Han, Kyu-Yong (Department of Dental Hygiene, Namseoul University) ;
  • Han, Kap-Hoon (Department of Pharmaceutical Engineering, Woosuk University) ;
  • Han, Dong-Min (Division of Life Sciences, Wonkwang University)
  • Published : 2008.12.31

Abstract

When a homothallic ascomycete Aspergillus nidulans is exposed to visible light, cleistothecial development is inhibited. The light response of development in A. nidulans implies the existence of delicate regulation process including reception and translocation of light signaling and determination of development. Previously, mutants that could develop cleistothecia even in the presence of relatively intensive visible light were isolated and several complementation groups were identified. A gene that was able to complement the silA98 mutation, which was responsible for preferred cleistothecia development under visible light, was isolated from AMA-NotI genomic library. The silA gene retained in the 4.3 kb recovered genomic library DNA has an open reading frame (ORF) consisted of 2,388 bp nucleotides, interrupted by 3 introns and consequently encoding 795 amino acids. The putative SilA carries a ${Zn_2}{Cys_6}$ binuclear cluster motif at N terminus and shows high amino acid sequence similarity to Aro80p of Saccharomyces cerevisiae. Deletion mutants of silA showed a strong induction of sexual development under visible light, indicating that SilA is involved in the negative regulation of sexual development in response to the light.

Aspergillus nidulans는 빛이 없는 조건에서는 유성분화가 주로 일어나고 빛이 있는 조건에서는 유성분화가 억제되고 대신 무성분화가 유도된다. 빛에 의해서 유성분화가 억제되는 것은 빛에 반응하여 유성 또는 무성분화를 조절하는 유전자가 있다는 것을 시사한다. 따라서 빛에 의해서 조절되는 유전자를 연구하기 위하여 광 조건하에서 유성분화를 하는 silA98 돌연변이를 분리하였으며, 이를 보완하는 유전자를 분리 및 분석하고자 A. nidulans의 AMA-NotI genomic library로부터 silA98 돌연변이를 상보하는 유전자 silA를 분리하였다. silA 유전자의 예상 ORF는 2,388 bp의 염기로 구성되어지고 795개의 아미노산을 암호화하고 있었다. 이 유전자는 Saccharomyces cerevisiae의 ARO80 유전자와 상동성을 보이며 SilA 단백질의 N 말단에는 약 51.9%의 상동성을 가지는 ${Zn_2}{Cys_6}$ motif를 지니고 있었다. silA 유전자 결손돌연변이주는 광 존재 하에서뿐만 아니라 고농도의 sorbitol에서도 유성분화가 유도되었다. 이는 silA 유전자가 빛과 고삼투 조건에서 유성분화를 억제하는 조절과정에 관여하고 있음을 의미한다. silA 유전자를 niiA promoter로 과다 발현시켰을 때의 형질은 야생형과 큰 차이를 보이지 않았다.

Keywords

References

  1. Adams, T. H. and Yu, J. H. 1998. Coordinate control of secondary metabolite production and asexual sporulation in Aspergillus nidulans. Curr. Opin. Microbiol. 1:674-677 https://doi.org/10.1016/S1369-5274(98)80114-8
  2. Church, G. M. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991-1995
  3. Clutterbuck, A. J. 1969. A mutational analysis of conidial development in Aspergillus nidulans. Genetics 63:317-327
  4. Han, D. M., Han, Y. J., Lee, Y. H., Jahng, K. Y,, Jahng, S. H. and Chae, K. S. 1990. Inhibitory conditions of asexual development and their application for the screening of mutants defective in sexual development. Kor. J. Mycol. 18:225-232
  5. Han, D. M., Han, Y. J., Chae, K. S., Jang, K. Y. and Lee, Y. H. 1994. Effects of cariou carbon sources on the development of Aspergillus nidulans with velA+ or velA1 allele. Kor. J. Mycol. 22:332-337
  6. Han, K. H. Lee, D. B., Kim, J. H., Kim, M. S., Han, K. Y., Kim, W. S., Park, Y. S., Kim, H. B. and Han, D. M. 2003. Environmental factors affecting development of Aspergillus nidulans. J. Microbiol. 41:34-40
  7. Lee, B. N. and Adams, T. H. 1994. Overexpression of flbA, and early regulator of Aspergillus asexual sporulation, leads to activation of brlA and premature initiation of development. Mol. Microbiol. 14:323-334 https://doi.org/10.1111/j.1365-2958.1994.tb01293.x
  8. Lee, S. B. and Taylor, J. W. 1990. Isolation of DNA from fungal mycelia and single spores. in PCR Protocol; A Guide to Methods and Application pp. 282-287
  9. Min, J. Y., Kim, H. R., Han, K. H. and Han, D. M. 2007. Isolation and characterization of Aspergillus nidulans mutants which undergo sexual development in light exposure. Kor. J. Microbiol. 43:77-82
  10. Pontecorvo, G., Roper, J. A., Hemmons, L. M., MacDonald, K. D. and Bufton, A. W. J. 1953. The Genetics of Aspergillus nidulans, Advances in Genetics. 5:141-238 https://doi.org/10.1016/S0065-2660(08)60408-3
  11. Sambrook, J., Fritsch, E. F. and Maniatis, T. 1989. Molecular Cloning: Alaboratory manual, 2nd ed. CSH
  12. Timberlake, W. E. 1980. Developmental gene regulation in Aspergillus nidulans, Developmental Biol. 78:497-510 https://doi.org/10.1016/0012-1606(80)90349-8
  13. Yu, J. H. 2006. Heterotrimeric G protein signaling and RGSs in Aspergillus nidulans, J. Microbiol. 44: 145-149

Cited by

  1. Sexual development and cryptic sexuality in fungi: insights fromAspergillusspecies vol.36, pp.1, 2012, https://doi.org/10.1111/j.1574-6976.2011.00308.x