• Title/Summary/Keyword: 분할행렬법

Search Result 52, Processing Time 0.021 seconds

An Analysis of Cylindrical Tank of Elastic Foundation by Transfer Matrix and Stiffness Matrix (전달행렬과 강성행렬에 의한 탄성지반상의 원형탱크해석)

  • 남문희;하대환;이관희;장홍득
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.193-200
    • /
    • 1997
  • Even though there are many analysis methods of circular tanks on elastic foundation, the finite element method is widely used for that purpose. But the finite element method requires a number of memory spaces, computation time to solve large stiffness equations. In this study many the simplified methods(Analogy of Beam on Elastic Foundation, Foundation Stiffness Matrix, Finite Element Method and Transfer Matrix Method) are applied to analyze a circular tank on elastic foundation. By the given analysis methods, BEF analogy and foundation matrix method, the circular tank was transformed into the skeletonized frame structure. The frame structure was divided into several finite elements. The stiffness matrix of a finite element is related with the transfer matrix of the element. Thus, the transfer matrix of each finite element utilized the transfer matrix method to simplify the analysis of the tank. There were no significant difference in the results of two methods, the finite element method and the transfer matrix method. The transfer method applied to a circular tank on elastic foundation resulted in four simultaneous equations to solve completely.

  • PDF

Numerical Analysis in Electromagnetic Problem Using Wavelet-Galerkin Method (Wavelet-Galerkin 방법을 이용한 전자기장 문제의 수치 해석)

  • Cho, Jung-Kyun;Lim, Sung-Ki;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07a
    • /
    • pp.174-176
    • /
    • 1997
  • 편미분 방정식의 형태로 나타나는 많은 전자기장 문제들을 유한요소법이나 유한차분법 등의 수치해석적 방법으로 해결하려는 경우 시스템 행렬을 구성하게 된다. 이때 해석영역의 요소수가 많을수록 행렬의 조건수(condition number)는 다항식(polynomial) 증가를 갖게 되며, 이는 풀어야 할 선형시스템에서 반복 연산 과정의 속도를 떨어뜨리는 결과를 야기한다. 이러한 결과를 wavelet을 기저 함수로 쓰게 되면, 더 높은 분해능(resolution)의 해를 유한 요소법이나 유한 차분법에서와 같은 요소 분할 과정이 없이 Mallat 변환이라는 간단한 과정을 통해 구할 수 있으며, 본 논문에서는 Daubechies의 wavelet 함수를 기저 함수로 사용하여 전자기장 문제에 적용함으로서 수치해석에 있어서 wavelet 함수의 적용이 많은 장점을 갖고 있음을 보인다.

  • PDF

Analysis of Large-Scale Network using a new Network Tearing Method (새로운 분할법에 의한 회로망해석)

  • 김준현;송현선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.12 no.3
    • /
    • pp.267-275
    • /
    • 1987
  • This paper concerns a study on the theory of tearing which analyzes a large scale network by partitioning it into a number of small subnetworks by cutting through some of the existing nodes and branches in the network. By considering of the relationship its voltage and current of node cutting before and after, the consititutive equations of tearing method is equvalent to renumbering the nodes of untorn network equations. Therefore the analysis of network is conveniently applied as same algorithm that is used in untorn network. Also the proposed nodal admittnace matrix is put in block diagonal form, therefore this method permit parallel processing analysis of subnetworks. 30 nodes network was tested and the effectiveness of the proposed algorithm was proved.

  • PDF

MLFMA for Computation of TM Scattering from Near Resonant Object (유사 공진형 물체에 대한 TM 전자파의 산란계산을 위한 MLFMA방법)

  • ;W. C. Chew
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.6
    • /
    • pp.735-745
    • /
    • 1998
  • The method of moments has been widely used in the analysis of TM scattering problems. Recently, significant advances in the development of fast and efficient techniques for solving large problems have been reported. In such methods, iterative matrix solvers are preferred by virtue of their speed and low memory requirements. But for near resonant and strong multiple scattering problems, e.g., involving an aircraft engine inlet, a large number of iterations is required for convergence. In this paper, an efficient approximate inverse based preconditioner is used to reduce this number of iterations. By using the matrix partitioning method, the computational is used to reduce this number of iterations. By using the matrix partitioning method, the computational cost for obtaining the approximate inverse is reduced to O(N). We apply this preconditioner to an O(NlogN) algorithm, the multilevel fast multipole algorithm, for the aircraft engine inlet problem. The numerical results show the efficiency of this preconditioner.

  • PDF

A Study on the Speaker Adaptation in HMM Using Variable Number of Branches in Each State (상태당 가지수를 가변시킨 HMM을 이용한 화자적응화에 관한 연구)

  • 김광태;서정일;한유수;홍재근
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.90-95
    • /
    • 1998
  • 본 논문에서는 CHMM인 CDHMM과 ARHMM을 이용하여 화자적응화 하는 방법을 각각 연구하였다. CDHMM에서는 최대사후화확률 추정법에 의하여 각 상태마다 하나의 가 지를 이용하여 화자에 적응시킨다. 본 논문에서는 음성의 다양한 음향학적 특징을 표현하기 위하여 상태마다 여러 개의 가지를 갖는 방법을 제안하였다. 상태마다의 적절한 가지 수를 결정하기 위하여 각 상태에 속하는 프레임 수와 특징 벡터들의 분산행렬의 행렬식값을 이용 하였다. ARHMM에서는 특징벡터로 선형예측계수를 사용하기 때문에 최대사후화확률 추정 법을 사용할 수 없게 된다. 따라서 화자독립모델을 이용하여 적응화자에 대한 음성을 Viterbi 알고리듬으로 상태별로 분할한 후 k-means 알고리듬을 이용하여 각 상태마다 하나 의 가지를 갖는 모델로 적응시키는 방법을 제안하였다.

  • PDF

An Analysis of Plate on the Elastic Half-Space by Using the Improved Subsection Method (개선된 소영역분할법을 이용한 탄성지반위에 놓인 평판의 해석)

  • Han, Choong-Mok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.2
    • /
    • pp.133-140
    • /
    • 2005
  • A Plate on the elastic half-space may be generally be analyzed by the finite element method. However, there ate some difficulties to obtain the flexibility matrix of the foundation based on the Boussinesq's theory. In this study, an efficient numerical procedure which uses the analysis results of the vertical displacements due to the uniformly distributed loading in a circular area is presented. Some numerical examples represent better results than those of numerical integration technique or subsection method especially in the case of irregular mesh pattern.

GIUH Model for River Runoff Estimation (하천 유출량 산정을 위한 GIUH모델)

  • 이순탁;박종권
    • Water for future
    • /
    • v.20 no.4
    • /
    • pp.267-278
    • /
    • 1987
  • This study aims at the decision of geomorphologic instantaneous unit hydrograph(GIUH) model parameter fore the ungaged or the data deficiented Basin, to analyze rainfall runoff relation in river basin by applying queueing theory with geomorphologic factors.The concept of GIUH model is based upon the principle of queueing theory of rain drops which may follow many possible routes during rainfall period within watershed system to ist outlet. Overland flow and stream flow can be simulated, respectively, by linear reservoir and linear channel conceptual models. Basically, the model is a mon-lineal and time variant hydrologic system model. The techniques of applying are adopted subarea method and mean-value method, the watershed is divided according to its stream number and order. To prove it to be applicable, the GIUH model is applied to the Wi-Stream basin of Nak-Dong River(Basin area; 475.53$\textrm{km}^2$), southen part of Korea. The simulated and the observed direct runoff hydrographs are compared with the peak discharge, times to peak and coefficients of efficiency, respectively, and the results show quite satisfactory.Therefore, th GIUH model can be extensively applied for the runoff analysis in the ungaged and the data deficiented basin.

  • PDF

Color Image Compression based on Inverse Colorization with Meanshift Subdivision Calculation (평균이동 분할계산기법을 사용한 역 컬러라이제이션 기반의 컬러영상압축)

  • Ryu, Taekyung;Lee, Suk-Ho
    • Journal of Broadcast Engineering
    • /
    • v.18 no.6
    • /
    • pp.935-938
    • /
    • 2013
  • In this letter, we propose a method for colorization based coding, which divides the colorization matrix into smaller sub-matrices using the meanshift segmentation. Using the proposed method the computation speed becomes more than 30 times faster. Furthermore, the smearing artifact, which appears in conventional colorization based compression method, is greatly reduced.

Accuracy Analysis of Parallel Method based on Non-overlapping Domain Decomposition Method (비중첩 영역 분할기법 기반 병렬해석의 정확도 분석)

  • Tak, Moonho;Song, Yooseob;Jeon, Hye-Kwan;Park, Taehyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.4
    • /
    • pp.301-308
    • /
    • 2013
  • In this paper, an accuracy analysis of parallel method based on non-overlapping domain decomposition method is carried out. In this approach, proposed by Tak et al.(2013), the decomposed subdomains do not overlap each other and the connection between adjacent subdomains is determined via simple connective finite element named interfacial element. This approach has two main advantages. The first is that a direct method such as gauss elimination is available even in a singular problem because the singular stiffness matrix from floating domain can be converted to invertible matrix by assembling the interfacial element. The second is that computational time and storage can be reduced in comparison with the traditional finite element tearing and interconnect(FETI) method. The accuracy of analysis using proposed method, on the other hand, is inclined to decrease at cross points on which more than three subdomains are interconnected. Thus, in this paper, an accuracy analysis for a novel non-overlapping domain decomposition method with a variety of subdomain numbers which are interconnected at cross point is carried out. The cause of accuracy degradation is also analyze and establishment of countermeasure is discussed.

A Parallel Algorithm for Large DOF Structural Analysis Problems (대규모 자유도 문제의 구조해석을 위한 병렬 알고리즘)

  • Kim, Min-Seok;Lee, Jee-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.475-482
    • /
    • 2010
  • In this paper, an efficient two-level parallel domain decomposition algorithm is suggested to solve large-DOF structural problems. Each subdomain is composed of the coarse problem and local problem. In the coarse problem, displacements at coarse nodes are computed by the iterative method that does not need to assemble a stiffness matrix for the whole coarse problem. Then displacements at local nodes are computed by Multi-Frontal Sparse Solver. A parallel version of PCG(Preconditioned Conjugate Gradient Method) is developed to solve the coarse problem iteratively, which minimizes the data communication amount between processors to increase the possible problem DOF size while maintaining the computational efficiency. The test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF structural problems.