• Title/Summary/Keyword: 분할함수

Search Result 547, Processing Time 0.036 seconds

Group Key Assignment Scheme based on Secret Sharing Scheme for Dynamic Swarm Unmanned Systems (동적 군집 무인체계를 위한 비밀분산법 기반의 그룹키 할당 기법)

  • Jongkwan Lee
    • Convergence Security Journal
    • /
    • v.23 no.4
    • /
    • pp.93-100
    • /
    • 2023
  • This paper presents a novel approach for assigning group keys within a dynamic swarm unmanned system environment. In this environment, multiple groups of unmanned systems have the flexibility to merge into a single group or a single unmanned system group can be subdivided into multiple groups. The proposed protocol encompasses two key steps: group key generation and sharing. The responsibility of generating the group key rests solely with the leader node of the group. The group's leader node employs a secret sharing scheme to fragment the group key into multiple fragments, which are subsequently transmitted. Nodes that receive these fragments reconstruct a fresh group key by combining their self-generated secret fragment with the fragment obtained from the leader node. Subsequently, they validate the integrity of the derived group key by employing the hash function. The efficacy of the proposed technique is ascertained through an exhaustive assessment of its security and communication efficiency. This analysis affirms its potential for robust application in forthcoming swarm unmanned system operations scenarios characterized by frequent network group modifications.

The Optimal Configuration of Arch Structures Using Force Approximate Method (부재력(部材力) 근사해법(近似解法)을 이용(利用)한 아치구조물(構造物)의 형상최적화(形狀最適化)에 관한 연구(研究))

  • Lee, Gyu Won;Ro, Min Lae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.95-109
    • /
    • 1993
  • In this study, the optimal configuration of arch structure has been tested by a decomposition technique. The object of this study is to provide the method of optimizing the shapes of both two hinged and fixed arches. The problem of optimal configuration of arch structures includes the interaction formulas, the working stress, and the buckling stress constraints on the assumption that arch ribs can be approximated by a finite number of straight members. On the first level, buckling loads are calculated from the relation of the stiffness matrix and the geometric stiffness matrix by using Rayleigh-Ritz method, and the number of the structural analyses can be decreased by approximating member forces through sensitivity analysis using the design space approach. The objective function is formulated as the total weight of the structures, and the constraints are derived by including the working stress, the buckling stress, and the side limit. On the second level, the nodal point coordinates of the arch structures are used as design variables and the objective function has been taken as the weight function. By treating the nodal point coordinates as design variable, the problem of optimization can be reduced to unconstrained optimal design problem which is easy to solve. Numerical comparisons with results which are obtained from numerical tests for several arch structures with various shapes and constraints show that convergence rate is very fast regardless of constraint types and configuration of arch structures. And the optimal configuration or the arch structures obtained in this study is almost the identical one from other results. The total weight could be decreased by 17.7%-91.7% when an optimal configuration is accomplished.

  • PDF

Hierarchical Organization of Embryo Data for Supporting Efficient Search (배아 데이터의 효율적 검색을 위한 계층적 구조화 방법)

  • Won, Jung-Im;Oh, Hyun-Kyo;Jang, Min-Hee;Kim, Sang-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.2
    • /
    • pp.16-27
    • /
    • 2011
  • Embryo is a very early stage of the development of multicellular organism such as animals and plants. It is an important research target for studying ontogeny because the fundamental body system of multicellular organism is determined during an embryo state. Researchers in the developmental biology have a large volume of embryo image databases for studying embryos and they frequently search for an embryo image efficiently from those databases. Thus, it is crucial to organize databases for their efficient search. Hierarchical clustering methods have been widely used for database organization. However, most of previous algorithms tend to produce a highly skewed tree as a result of clustering because they do not simultaneously consider both the size of a cluster and the number of objects within the cluster. The skewed tree requires much time to be traversed in users' search process. In this paper, we propose a method that effectively organizes a large volume of embryo image data in a balanced tree structure. We first represent embryo image data as a similarity-based graph. Next, we identify clusters by performing a graph partitioning algorithm repeatedly. We check constantly the size of a cluster and the number of objects, and partition clusters whose size is too large or whose number of objects is too high, which prevents clusters from growing too large or having too many objects. We show the superiority of the proposed method by extensive experiments. Moreover, we implement the visualization tool to help users quickly and easily navigate the embryo image database.

Design and Implementation of Low-power Neuromodulation S/W based on MSP430 (MSP430 기반 저전력 뇌 신경자극기 S/W 설계 및 구현)

  • Hong, Sangpyo;Quan, Cheng-Hao;Shim, Hyun-Min;Lee, Sangmin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.110-120
    • /
    • 2016
  • A power-efficient neuromodulator is needed for implantable systems. In spite of their stimulation signal's simplicity of wave shape and waiting time of MCU(micro controller unit) much longer than execution time, there is no consideration for low-power design. In this paper, we propose a novel of low-power algorithm based on the characteristics of stimulation signals. Then, we designed and implement a neuromodulation software that we call NMS(neuro modulation simulation). In order to implement low-power algorithm, first, we analyze running time of every function in existing NMS. Then, we calculate execution time and waiting time for these functions. Subsequently, we estimate the transition time between active mode (AM) and low-power mode (LPM). By using these results, we redesign the architecture of NMS in the proposed low-power algorithm: a stimulation signal divided into a number of segments by using characteristics of the signal from which AM or LPM segments are defined for determining the MCU power reduces to turn off or not. Our experimental results indicate that NMS with low-power algorithm reducing current consumption of MCU by 76.31 percent compared to NMS without low-power algorithm.

A Study on Predictive Traffic Control Algorithms for ABR Services (ABR 서비스를 위한 트래픽 예측 제어 알고리즘 연구)

  • 오창윤;장봉석
    • Journal of Internet Computing and Services
    • /
    • v.1 no.2
    • /
    • pp.29-37
    • /
    • 2000
  • Asynchronous transfer mode is flexible to support multimedia communication services using asynchronous time-sharing and statistical multimedia techniques to the existing data communication area, ATM ABR service controls network traffic using feedback information on the network congestion situation in order to guarantee the demanded service qualities and the available cell rates, In this paper we apply the control method using queue length prediction to the formation of feedback information for more efficient ABR traffic control. If backward node receive the longer delayed feedback information on the impending congestion, the switch can be already congested from the uncontrolled arriving traffic and the fluctuation of queue length can be inefficiently high in the continuing time intervals, The feedback control method proposed in this paper predicts the queue length in the switch using the slope of queue length prediction function and queue length changes in time-series, The predicted congestion information is backward to the node, NLMS and neural network are used as the predictive control functions, and they are compared from performance on the queue length prediction. Simulation results show the efficiency of the proposed method compared to the feedback control method without the prediction, Therefore, we conclude that the efficient congestion and stability of the queue length controls are possible using the prediction scheme that can resolve the problems caused from the longer delays of the feedback information.

  • PDF

Automatic Boundary Detection of Carotid Intima-Media based on Multiresolution Snake (다해상도 스네이크를 통한 경동맥 내막-중막 경계선 자동추출)

  • Lee, Yu-Bu;Choi, Yoo-Joo;Kim, Myoung-Hee
    • The KIPS Transactions:PartA
    • /
    • v.14A no.2
    • /
    • pp.77-84
    • /
    • 2007
  • The intima media thickness(IMT) of the carotid artery from B mode ultrasound images has recently been proposed as the most useful index of individual atherosclerosis and can be used to predict major cardiovascular events. Ultrasonic measurements of the IMT are conventionally obtained by manually tracing interfaces between tissue layers. The drawbacks of this method are the inter and intra observer variability and its inefficiency. In this paper, we present a multiresolution snake method combined with the dynamic programming, which overcomes the various noises and sensitivity to initialization of conventional snake. First, an image pyramid is constructed using the Gaussian pyramid that maintains global edge information with smoothing in the images, and then the boundaries are automatically detected in the lowest resolution level by minimizing a cost function based on dynamic programming. The cost function includes cost terms which are representing image features and geometrical continuity of the vessel interfaces. Since the detected boundaries are selected as initial contour of the snake for the next level, this automated approach solves the problem of the initialization. Moreover, the proposed snake improves the problem of converging th the local minima by defining the external energy based on multiple image features. In this paper, our method has been validated by computing the correlation between manual and automatic measurements. This automated detection method has obtained more accurate and reproducible results than conventional edge detection by considering multiple image features.

The Efficiency and General Equilibrium Effect by the Emission Trading Structure under the Climate Change Convention (기후변화협약 하의 배출권 거래 대상에 따른 일반균형효과와 효율성 비교)

  • Hur, Gahyeong;Cho, GyeongLyeob
    • Environmental and Resource Economics Review
    • /
    • v.15 no.2
    • /
    • pp.201-245
    • /
    • 2006
  • We applied general equilibrium model to analysis the economic impact of international emission trading by sector and the efficiency of the Convention to study whether Climate Change Convention satisfy the efficiency. We divided the world as 4 groups : USA, OECD members w/o USA (OEC), Former Soviet Union (FSU) and Developing countries (DEV). Compared to no trading, global trading would accomplish the same environmental effect with less cost as much as 97.8 billion$, which is the surplus of trading. However, half of it is taken by USA and 20% by OEC. FSU and DEV have only 18% and 10%. This result suggest the two things. First, the emission trading is effective as far as the participation of developing countries are guaranteed. If they do not take part in the coalition and emit the leakage, it may threaten the stability of the international trading coalition. Second, we found the logical ground of the side payment for developing countries. The permit buying countries take more share of the surplus under the emission trading, while the energy sector of developing countries shrinks to sell permits, which may adversely affect to economic growth of the countries. Therefore, the Annex-I countries need to provide side payment to lead the participation of the developing countries.

  • PDF

Analytical Determination of Optimal Transit Stop Spacing (최적 정류장 간격의 해석적 연구)

  • Park, Jun-Sik;Go, Seung-Yeong;Lee, Cheong-Won;Kim, Jeom-San
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.3
    • /
    • pp.145-154
    • /
    • 2007
  • Determining stop spacing is a very important process in transit system planning. This study is involved in an analytical approach to decide the transit stop spacing. Transit stop spacing should be longer as 1) user access speed, 2) user travel time, and 3) dwell time increase, and shorter as 1) passengers (boardings and alightings) and 2) headway increase. In this study, a methodology is proposed to determine transit stop spacing to minimize total cost (user cost plus operator cost) with irregular passenger distribution (boardings and alightings) Without considering in-vehicle passengers, the transit stop spacing should be shorter in the concentrated sections of the passenger distribution than in others to minimize total cost. Through the conceptual analysis, it is verified that the transit stop spacing could be longer as the in-vehicle passengers increase in certain sections. This study proposes a simple practical method to determine transit stop spacing and locations instead of a dynamic programming method which generally includes a complex and difficult calculation. If the space axis is changed to a time axis. the methodology of this study could be expanded to analyze a solution for the transit service (or headway) schedule problem.

Shape Optimization of the Plane Truss Structures with the Statical and Natural Frequency Constraints (정적(靜的) 및 고유진동수(固有振動數) 제약조건식(制約條件式)을 고려(考慮)한 평면(平面) 트러스 구조물(構造物)의 형상최적화(形狀最適化)에 관(關)한 연구(硏究))

  • Lee, Gyu Won;Lee, Gun Tea
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.23-38
    • /
    • 1990
  • In this study, decompositive optimization method of two levels was selected to optimize effectively the geometry of the truss which takes the multi-loading condition, and the allowable stress, bucking stress, displacement and natural frequency constraints into consideration. The algorithm of this study is made up of sectional optimization using the feasible direction method in level 1, and geometrical optimization employing Powell's one-direction search method which menimizes only objictive function in level 2. The results of this study acquired by beenning applied to structural model of the truss are as follows : 1. It is verified that the algorithm of this study effectively converges, independent of the initial geometry of the truss and the applied various constraints. 2. The optimum goemetry of the truss varies more considerably according to the constraints selected. 3. Under the condition of the same design, the weight of the truss can be decreased more considerably by means of optimizing even the geometry of truss than by means of optimizing the section of truss while fixing geometrical configuration of it, even though there might be a little difference according to the initial geometry of the truss and the design condition.

  • PDF

The Design of Optimal Filters in Vector-Quantized Subband Codecs (벡터양자화된 부대역 코덱에서 최적필터의 구현)

  • 지인호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.97-102
    • /
    • 2000
  • Subband coding is to divide the signal frequency band into a set of uncorrelated frequency bands by filtering and then to encode each of these subbands using a bit allocation rationale matched to the signal energy in that subband. The actual coding of the subband signal can be done using waveform encoding techniques such as PCM, DPCM and vector quantizer(VQ) in order to obtain higher data compression. Most researchers have focused on the error in the quantizer, but not on the overall reconstruction error and its dependence on the filter bank. This paper provides a thorough analysis of subband codecs and further development of optimum filter bank design using vector quantizer. We compute the mean squared reconstruction error(MSE) which depends on N the number of entries in each code book, k the length of each code word, and on the filter bank coefficients. We form this MSE measure in terms of the equivalent quantization model and find the optimum FIR filter coefficients for each channel in the M-band structure for a given bit rate, given filter length, and given input signal correlation model. Specific design examples are worked out for 4-tap filter in 2-band paraunitary filter bank structure. These optimum paraunitary filter coefficients are obtained by using Monte Carlo simulation. We expect that the results of this work could be contributed to study on the optimum design of subband codecs using vector quantizer.

  • PDF