• Title/Summary/Keyword: 분자 마커

Search Result 259, Processing Time 0.024 seconds

Development of a CAPS Marker Derived from the Pg-Actin Gene Sequences and RAPD Markers in Platycodon grandiflorum (도라지에서의 RAPD 마커 분석과 Actin 유전자 염기서열에서 유래한 CAPS 분자표지 개발)

  • Kim, Munhwi;Jeong, Eunah;Jeong, Jeongsu;Kwon, Soontae;Jeon, Ikjo;Jeong, Jeong Hag;Lee, Je Min;Yeam, Inhwa
    • Korean Journal of Plant Resources
    • /
    • v.28 no.5
    • /
    • pp.648-655
    • /
    • 2015
  • Balloon flower (Platycodon grandiflorum A. DC.) is a perennial plant of mainly Campanulaceae family, which have been widely used as a food ingredient and herbal medicine in East Asia. Although demands on related products and yearly cultivation area for balloon flower are increasing, diverse fundamental technologies and molecular breeding studies are not very well supported in Platycodons. In this study, 30 random amplification of polymorphic DNA (RAPD) primers were test in an attempt to explore genetic diversities. In addition, sequences information of the actin gene, a well conserved gene encoding a globular protein that forms microfilaments, was retrieved and analyzed. Two actin homologs were recovered; 3.4 kb fragment is a Pg-actin and 1.4 kb fragment is a Pg-actin homolog with 28.6% similarity. We have confirmed that the Pg-actin gene is configured into 4 exons and 3 introns. A single nucleotide polymorphism (SNP), G↔A, was detected on the intron 3, which served as a target for the CAPS marker development. The marker Pg-Actin-Int3 was applied to 32 balloon flower accessions. Balloon flower DNA sequence information generated in this study is expected to contribute to the analysis and molecular breeding and genetic diversity analysis of balloon flowers.

Development of Molecular Markers and Application for Breeding in Chinese Cabbage (배추의 분자 마커 개발 및 육종적 활용)

  • Kim, Ho-Il;Hong, Chang Pyo;Im, Subin;Choi, Su Ryun;Lim, Yong Pyo
    • Horticultural Science & Technology
    • /
    • v.32 no.6
    • /
    • pp.745-752
    • /
    • 2014
  • Chinese cabbage (Brassica rapa L. ssp. pekinensis) is an economically important vegetable crop as a source of the traditional food Kimchi in Korea. Although many varieties exhibiting desirable traits have been developed by the conventional selective breeding approach, breeding related to abiotic or biotic stresses, such as a particular pests or diseases, or tolerance to climatic conditions, is likely to be slow. This could be helped by an efficient method for selection from various, rapidly-evolved genetic resources on the basis of molecular markers. In particular, the Brassica genome sequencing project enables genome-wide discovery of genes or genetic variants associated with agricultural traits. We here discuss the recent progress in the field of Chinese cabbage breeding with regard to the application of molecular markers.

Molecular phylogenetic study of Pinus in Korea based on chloroplast DNA psbA-trnH and atpF-H sequences data (엽록체 DNA psbA-trnH와 atpF-H 염기서열에 기초한 한국산 소나무속의 분자계통학적 연구)

  • Hong, Jeong-Ki;Yang, Jong-Cheol;Lee, You-Mi;Kim, Joo-Hwan
    • Korean Journal of Plant Taxonomy
    • /
    • v.44 no.2
    • /
    • pp.111-118
    • /
    • 2014
  • This study aims to define the phylogenetic relationship within Korean Pinus L. and to find the molecular markers which resolve the phylogenetic relationship in genus Pinus. cpDNA atpF-H and psbA-trnH regions were used as molecular markers. We performed the molecular phylogenetic study on 17 taxa of Pinus in Korea. The combined analyses of two gene loci showed that Korean Pinus was a monophyletic group supported by 100% BP. According to the results of separate analyses, psbA-trnH region seems to work better resolving power to clarify the phylogenetic ambiguity in Korean Pinus than those of atpF-H region. Also, we tried to checked the value and resolution of two chloroplast DNA loci on phylogenetic implications.

Comparison of the complete chloroplast genome sequence of Solanum stoloniferum with other Solanum species generates PCR-based markers specific for Solanum stoloniferum (엽록체 전장유전체 정보를 이용한 감자 야생종 Solanum stoloniferum 구별 분자 마커 개발)

  • Kim, Soojung;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • Solanum stoloniferum, one of the wild tetraploid Solanum species belonging to the Solanaceae family, is an excellent resource for potato breeding owing to its resistance to several important pathogens. However, the sexual hybridization of S. stoloniferum with S. tuberosum (potato) is hampered due to the sexual incompatibility between the two species. To overcome this and introgress the various novel traits of S. stoloniferum in cultivated potatoes, cell fusion can be performed. The identification of the fusion products is crucial and can be achieved with the aid of molecular markers. In this study, the chloroplast genome sequence of S. stoloniferum was obtained by next-generation sequencing technology, and compared with that of six other Solanum species to identify S. stoloniferum-specific molecular markers. The length of the complete chloroplast genome of S. stoloniferum was found to be 155,567 bp. The structural organization of the chloroplast genome of S. stoloniferum was similar to that of the six other Solanum species studied. Phylogenetic analysis of S. stoloniferum with nine other Solanaceae family members revealed that S. stoloniferum was most closely related to S. berthaultii. Additional comparison of the complete chloroplast genome sequence of S. stoloniferum with that of five Solanum species revealed the presence of six InDels and 39 SNPs specific to S. stoloniferum. Based on these InDels and SNPs, four PCR-based markers were developed to differentiate S. stoloniferum from other Solanum species. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. stoloniferum.

Identification of a Single Nucleotide Polymorphism (SNP) Marker for the Detection of Enhanced Honey Production in Hoenybee (수밀력 우수 꿀벌 계통 판별을 위한 계통 특이 분자마커 개발)

  • Kim, Hye-Kyung;Lee, Myeong-Lyeol;Lee, Man-Young;Choi, Yong-Soo;Kim, Dongwon;Kang, Ah Rang
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.147-154
    • /
    • 2017
  • Honeybees (Apis mellifera) are common pollinators and important insects studied in agriculture, ecology and basic research. Recently, RDA (Rural Development Administration) and YIRI (Yecheon-gun Industrial Insect Research Institute) have been breeding a triple crossbred honey bee named Jangwon, which have the ability to produce superior quality honey. In this study, we identified a single nucleotide polymorphism (SNP) marker in the genome of Jangwon honeybee, particularly, in the paternal line (D line). Initially, we performed Sequence-Based Genotyping (SBG) using the Illumina Hiseq 2500 in 5 honeybee inbred lines; A, C, D, E, and F; and obtained 1,029 SNPs. Seventeen SNPs for each inbred line were generated and selected after further filtering of the SNP dataset. The 17 SNP markers validated by performing TaqMan probe-based real-time PCR and genotyping analysis was conducted. Genotyping analysis of the 5 honeybee inbred lines and one hybrid line, $D{\times}F$, revealed that one set of SNP marker, AmD9, precisely discriminated the inbred line D from the others. Our results suggest that the identified SNP marker, AmD9, is successful in distinguishing the inbred honeybee lines D, and can be directly used for genotyping and breeding applications.

Morphology of a Larval Hammerjaw Omosudis lowii Gunther 1887 (Aulopiformes, Omosudidae) Identified by Partial Mitochondrial 12S rRNA Gene Analysis (12S rRNA로 동정한 홍메치목 Omosudis lowii 치어의 형태적 특징)

  • Choi, Hae-young;Jang, Yo-Soon;Oh, Ji-na;Kim, Sung
    • Korean Journal of Ichthyology
    • /
    • v.32 no.4
    • /
    • pp.239-244
    • /
    • 2020
  • The morphological characteristics of a larval fish (7.8 mm in body length) collected off Chuuk, Micronesia were highly similar to those of larval Omosudis sp., except fin development and body length. It was identified as Omosudis lowii by partial mitochondrial 12S rRNA gene analysis. The morphological traits of the larval fish validated by the molecular genetic marker will be informative for species-level identification of larval Omosudis lowii.

Current status of peach genomics and transcriptomics research (복숭아 유전체 및 전사체 최근 연구 동향)

  • Cho, Kang Hee;Kwon, Jung Hyun;Kim, Se Hee;Jun, Ji Hae
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.312-325
    • /
    • 2015
  • In this review, we summarized the trends of genomics and transcriptomics research on peach, a model species of Rosaceae. Peach genome maps have been developed from various progeny groups with many next-generation sequencing (NGS) based single nucleotide polymorphism markers. Molecular markers of qualitative traits and quantitative trait loci (QTL) such as fruit characteristics, blooming date, and disease resistance have been analyzed. Among many characteristics, markers related to flesh softening and flesh adhesion are useful for marker assisted selection. Through comparative genomics, peach genome has been compared to the genome of Arabidopsis, Populus, Malus, and Fragaria species. Through transcriptomics and proteomics, fruit growth and development, and flavonoid synthesis, postharvest related transcriptomes and disease resistance related proteins have been reported. Recently, development of NGS based markers, construction of core collection of germplasm, and genotyping of various progenies have been preceded. In the near future, accurate QTL analysis and identification of useful genes are expected to establish a foundation for effective molecular breeding.

Construction of a DNA Profile Database for Commercial Cucumber (Cucumis sativus L.) Cultivars Using Microsatellite Marker (Microsatellite 마커를 이용한 오이 유통품종 DNA Profile Data Base 구축)

  • Kwon, Yong-Sham;Choi, Keun-Jin
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.344-351
    • /
    • 2013
  • Microsatellite is one of the most suitable marker for cultivar identification as it has great discrimination power for cultivars with narrow genetic variation. The polymorphism level between 358 microsatellite primer pairs and 11 commercial cucumber cultivars was investigated. Thirty-one primer pairs showed high polymorphism within cucumber cultivars with different fruit types. These markers were applied for the constructing DNA profile data base of 110 commercial cucumber cultivars through multiplex PCR and fluorescence based automatic detection system. A total of 139 polymorphic amplified fragments were obtained by using 31 microsatellite markers. The average of PIC value was 0.610 ranging from 0.253 to 0.873. One hundred and thirty nine microsatellite loci were used to calculate Jaccard's distance coefficients for UPGMA cluster analysis. A clustering group of varieties, based on the results of microsatellite analysis, were categorized into plant shape and fruit type. Almost the cultivars were discriminated by marker genotypes. This information may be useful to compare through genetic relationship analysis between existing variety and candidate varieties in distinctive tests and protection of plant breeders' intellectual property rights through variety identification.