Browse > Article
http://dx.doi.org/10.5010/JPB.2015.42.4.312

Current status of peach genomics and transcriptomics research  

Cho, Kang Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Kwon, Jung Hyun (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Kim, Se Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Jun, Ji Hae (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Publication Information
Journal of Plant Biotechnology / v.42, no.4, 2015 , pp. 312-325 More about this Journal
Abstract
In this review, we summarized the trends of genomics and transcriptomics research on peach, a model species of Rosaceae. Peach genome maps have been developed from various progeny groups with many next-generation sequencing (NGS) based single nucleotide polymorphism markers. Molecular markers of qualitative traits and quantitative trait loci (QTL) such as fruit characteristics, blooming date, and disease resistance have been analyzed. Among many characteristics, markers related to flesh softening and flesh adhesion are useful for marker assisted selection. Through comparative genomics, peach genome has been compared to the genome of Arabidopsis, Populus, Malus, and Fragaria species. Through transcriptomics and proteomics, fruit growth and development, and flavonoid synthesis, postharvest related transcriptomes and disease resistance related proteins have been reported. Recently, development of NGS based markers, construction of core collection of germplasm, and genotyping of various progenies have been preceded. In the near future, accurate QTL analysis and identification of useful genes are expected to establish a foundation for effective molecular breeding.
Keywords
Peach; Genome; Transcriptome; Molecular breeding;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783-790   DOI
2 Dhanapal AP, Crisosto CH (2013) Assoiciation genetic of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) across multiply years. Biotech 3:481-490
3 Dirlewanger E, Bodo C (1994) Molecular genetic mapping of peach. Euphytica 77:101-103   DOI
4 Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1-13   DOI
5 Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin C Pozat R, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theor Appl Genet 109:827-838   DOI
6 Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004b) Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891-9896   DOI
7 Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTL controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18-31   DOI
8 Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach [Prunus persica (L.) Batsch] $\times$ Prunus davidiana hybrids. Theor Appl Genet 93:909-919
9 Frett TJ, Reighard GL, Okie WR, Gasic K (2014) Mapping quantitative loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomes 10:367-381   DOI
10 Foulongne M, Pascal T, Pfeiffer F, Kervella J (2002) Introgression of a polygenic resistance to powdery mildew from wild species Prunus davidiana into peach [Prunus persica (L.) Batsch), a case study of marker assisted selection in fruit tree. Acta Hortic 592:259-265
11 Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTL for powdery mildew resistance in peach $\times$ Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33-50   DOI
12 Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-not nematode resistance in peach. J Amer Soc Hort Sci 130:24-33
13 Georgi LL, Wang Y, Yverggniaux D, Ormsbee T, Inigo M, Reighard GL, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151-1158   DOI
14 Gonzalez-Aguero M, Pavez L, Ibanez F, Pacheco I, Campos-Vargas R, Meisel LA, Orellana A, Retamale J, Silvia H, Gonzalez M, Gambianzo V (2008) Identification of wooliness response genes in peach fruit after post-harvest treatments. J Exp Bot 59:1973-1986   DOI
15 Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305-1309   DOI
16 Iezzoni A, Weebadde C, Luby J, Yue CY, van de Weg E, Fazio G, Main D, Peace CP, Bassil NV, McFerson J (2010) RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Hortic 859:389-394
17 Laurens F, Aranzana MJ, Arus P, Bonany J, Corelli L, Patocchi A, Peil A, Quilot B, Salvi S, van de Weg E, Vecchietti A (2010) Fruit-Breedomics: a new European initiative to bridge the gap between scientific research and breeding Rosaceae fruit tree crops. p. 242. Book of abstracts v 2. IHC Lisbon
18 Ku HM, Liu J, Doganlar S, and Tanksley SD (2001) Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovate containing region in tomato chromosome 2. Genome 44:470-475   DOI
19 Lambert P, Hagen LS, Arus P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L) compared with the almond Texas $\times$ peach Earlygold reference map for Prunus. Theor Appl Genet 108:1120-1130   DOI
20 Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF (2009) Biochemical and proteomic analysis of 'Dixiland' peach fruit (Prunus persica) upon heat treatment. J Exp Bot 60:4315-4333   DOI
21 Linge CS, Bassi D, Bianco L, Pacheco I, Pirona R, Rossini L (2015) Genetic dissection of fruit weight and size in an F2 peach (Prunus persica (L.) Batsch) progeny. Mol Breed 35:71   DOI
22 Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199-207   DOI
23 Marandel G, Pascal T, Candresse T, Decroocq V (2009) Quantitative resistance to plum pox virus in Prunus davidiana P1908 linked to components of the eukaryotic translation initiation complex. Plant Pathol 58:425-435   DOI
24 Martinez-Garcia PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Crisosto CH (2013) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L). Tree Genet Genomes 9:19-36   DOI
25 Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L) Batsch]. Theor Appl Genet 101:421-428   DOI
26 Scorza R, Melnicenco L, Dang P, Abbott AG (2002) Testing a microsatellite marker for selection of colummar growth habit in peach (Prunus persica (L.) Batsch). Acta Hortic 592:285-289
27 Shen Z, Confolent C, Lambert P, Poessel JL, Turion BQ, Yu Mingliang, Ma R, Pascal T (2013) Characterization and genetic mapping of new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genet Genomes 9:1435-1446   DOI
28 Shimada T, Yamamoto T, Hayama H, Yamaguchi M, Hayashi T (2000) A genetic linkage map constructed by using an interspecific cross between peach cultivars grown in Japan. J Japan Soc Hort Sci 69:536-542   DOI
29 Tani E, Polidoros AN, and Tsaftaris AS (2007) Characterization and expression analysis of FRUITFULL- and SHATTERPROOFlike genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiol 27:649-659   DOI
30 Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2006) The use of microarray $\mu$ PEACH1.0 to investigate transcriptome changes during transition from preclimacteric to climacteric phase in peach fruit. Plant Sci 170:606-613   DOI
31 Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the omesticated apple (Malus $\times$ domestica Borkh.). Nat Genet 42:833-839   DOI
32 Vendramin E (2006) Application of advanced molecular techniques in peach [Prunus persica (L.) Batsch] breeding to improve fruit quality traits. Dissertation, University of Tuscia, Italy
33 Bailey JS, French AP (1949) The inheritance of certain fruit and foliage characteristics in the peach. Mass Agr Exp St RE B 452
34 Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hortic 465:41-49
35 Abbott AG, Verde I (2013). The peach genome: insights on genetic diversity and domestication. Acta Hortic 1084:63-68
36 Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819-825   DOI
37 Arus P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. p. 175-211. In: Janick J (ed) Plant breeding reviews, vol 27. Wiley, Hoboken
38 Bailey JS, French AP (1933) The inheritance of certain characteristics in the peach. Proc Am Soc Hort Sci 29:127-130
39 Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495-507   DOI
40 Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520-529   DOI
41 Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Munoz-Torres M, Baird WV, Abbott A (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341-350   DOI
42 Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823-1837   DOI
43 Chan Z, Qin G, Xu X, Li B, Tian S (2007) Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J Proteome Res 6:1677-1688   DOI
44 Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biol 9:59   DOI
45 Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Hered 81:68-71   DOI
46 Cantin CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79-87   DOI
47 Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, Esmenjaud D (2004) Location of independent root-knot nematode resistance gene in plum and peach. Theor Appl Genet 108:765-773   DOI
48 Chaparro JX, Werner DJ, O'Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805-815
49 Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13   DOI
50 Decroocq V, Foulongne M, Lambert P, Le Gall P, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genom 272:680-689   DOI
51 Nilo R, Saffie C, Lilley K, Baeza-Yates R, Cambiazo V, Campos-Vargas R, Gonzalez M, Meisel LA, Retamales J, Silva H, Orellana A (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomic 11:43   DOI
52 Monet R (1989) Peach genetics: past, present and future. Acta Hortic 254:49-53
53 Monet R, Guye A, Roy M, Dachary N (1996) Peach Mendelian genetics: a short review and new results. Agronomie 16:321-329   DOI
54 Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363-19368   DOI
55 Ogundiwin EA, Marti C, Forment J, Pons C, Granel A, Gradziel TM, Peace CP, Crisosoto CH (2008) Development of ChillPeach genomic tools and identification of cold-response genes in peach fruit. Plant Mol Biol 68:379-397   DOI
56 Pascal T, Pfeiffer F, Kervella J (2010) Powdery mildew resistance in the peach cultivar Pamirskij 5 is genetically linked with the Gr gene for leaf color. HortScience 45:150-152
57 Peace CP, Callahan A, Ogundiwin EA, Potter D, Gradziel TM, Bliss FA, Crisosto CH (2007) Endopolygalacturonase genotypic variation in Prunus. Acta Hortic 738:639-646
58 Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16:21-31   DOI
59 Peace CP, Norelli JL (2009) Genomics approaches to crop improvement in the Rosaceae. p. 19-53. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York
60 Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Salamini F (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487-494   DOI
61 Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the [Prunus persica (L.) Batsch] $\times$ P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111:1013-1021   DOI
62 Verde I, Quarta R, Cerdrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291-297
63 Vilanova S, Sargent DJ, Arus P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol 8:67   DOI
64 Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hortic 465:79-87
65 Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, ambiazo V, Campos-Vargas R, Gonzalez M, Orellana A, Silva H (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genom 10:423   DOI
66 Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002) Genetic mapping of the evergrowing gene in peach (Prunus persica (L.) Batsch). J Hered 93:352-358   DOI
67 Warburton ML, Becerra-Velasquez VL, Goffreda JC, Bliss FA (1996) Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach. Theor Appl Genet 93:920-925
68 Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N,Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271-278   DOI
69 Wasternack C (2007) Jasmonates, an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681-697   DOI
70 Werner DJ, Creller MA, Chaparro JX (1998) Inheritance of the blood-flesh trait in peach. HortScience 33:1243-1246
71 Yamamoto Y, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP, and RAPD. J Jpn Soc Hortic Sci 74:204-213   DOI
72 Zhebentyayeva TN, Horn R, Mook J, Lecouls A, Georgi L, Abbott AG, Reighard GL, Swire-Clark G, Baird WV (2006) A physical framework for the peach genome. Acta Hortic 713:83-88
73 Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arus P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008) A framework physical map for peach, a model Rosaceae species. Tree Genet Genomes 4:745-756   DOI
74 Zhebentyayeva TN, Fan S, Chandra A, Bielenberg DG, Reighard GL, Okie WR, Abbott AG (2014) Dissection of chilling requirement and bloom data QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genet Genomes 10:35-51   DOI
75 Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P (2008) Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot 59:2781-2791   DOI
76 Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323-335   DOI
77 Ziosi V, Bonghi C, Bregoli AM, Trainotti L, Biondi S, Sutthiwal S, Kondo S, Costa G, Torrigiani P (2008) Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. J Exp Bot 59:563-573   DOI
78 Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888-895   DOI
79 Dirlewanger E, Quero-Garcia J, Le Dnatec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arus P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 190:208-292
80 Dominguez I, Graziano E, Gebhardt C, Barakat A, Berry S, Arus P, Delseny M, Barnes S (2003) Plant genome archeology: evidence for conserved ancestral chromosome segments in dicotyledonous plant species. Plant Biotechnol J 1:91-99   DOI
81 Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Dumas LS, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTL for sugar and organic acid content in peach (Prunus persica (L.) Batsch). Theor Appl Genet 105:145-159   DOI
82 Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917-930   DOI
83 Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91:262-269
84 Joobeur T, Periam N, Vicente MD, King GJ, Arus P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649-655   DOI
85 Illa E, Sargent DJ, Lopez Girona E, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, Van der Knapp E, Iezzoni A, Gardiner S, Velasco R, Arus P, Chagne D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9   DOI
86 Jauregui B (1998) Identification of molecular markers linked to agronomic characters in an interspecific almond $\times$ peach progeny. University of Barcelona, Spain
87 Jauregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arus P (2001) A reciprocal translocation between 'Garfi' almond and 'Nemared' peach. Theor Appl Genet 102:1169-1176   DOI
88 Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond $\times$ peach F2 progeny. Theor Appl Genet 97:1034-1041   DOI
89 Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arus P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genom 7:81   DOI
90 Jung S, Jiwan D, Cho I, Lee T, Abbott A, Sosinski B, Main D (2009) Synteny of Prunus and other model plant species. BMC Genom 10:76   DOI
91 Kim SH, Nam EY, Cho KH, Shin IS, Kim HR, Whang HS (2012) Comparison of transcriptome analysis between red flesh peach cultivar and white flesh peach cultivar using next generation sequencing. J Plnat Biotechnol 39:273-280   DOI
92 Quarta R, Dettori MT, Verde I, Gentile A, Broda Z (1998) Genetic analysis of agronomic traits and genetic linkage mapping in a BC1 peach population using RFLPs and RAPDs. Acta Hortic 365:51-60
93 Pena-Cortes H, Barrios P, Dorta F, Polanco V, Sanchez C, Sanchez E, Ramirez I (2005) Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening. J Plant Growth Regul 23:246-260
94 Pozzi C, Vecchietti A (2009) Peach structural genomics. p. 235-257. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York
95 Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hortic 521:233-241
96 Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884-897   DOI
97 Rajapakse S, Bethoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503-510
98 Renaut J, Hausman J, Bassett C, Artlip T, Cauchie H, Witters E, Wisniewski M (2008) Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genet Genomes 4:589-600   DOI
99 Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291-304   DOI