DOI QR코드

DOI QR Code

Current status of peach genomics and transcriptomics research

복숭아 유전체 및 전사체 최근 연구 동향

  • Cho, Kang Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kwon, Jung Hyun (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Se Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Jun, Ji Hae (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 조강희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 권정현 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 김세희 (농촌진흥청 국립원예특작과학원 과수과) ;
  • 전지혜 (농촌진흥청 국립원예특작과학원 과수과)
  • Received : 2015.12.19
  • Accepted : 2015.12.24
  • Published : 2015.12.31

Abstract

In this review, we summarized the trends of genomics and transcriptomics research on peach, a model species of Rosaceae. Peach genome maps have been developed from various progeny groups with many next-generation sequencing (NGS) based single nucleotide polymorphism markers. Molecular markers of qualitative traits and quantitative trait loci (QTL) such as fruit characteristics, blooming date, and disease resistance have been analyzed. Among many characteristics, markers related to flesh softening and flesh adhesion are useful for marker assisted selection. Through comparative genomics, peach genome has been compared to the genome of Arabidopsis, Populus, Malus, and Fragaria species. Through transcriptomics and proteomics, fruit growth and development, and flavonoid synthesis, postharvest related transcriptomes and disease resistance related proteins have been reported. Recently, development of NGS based markers, construction of core collection of germplasm, and genotyping of various progenies have been preceded. In the near future, accurate QTL analysis and identification of useful genes are expected to establish a foundation for effective molecular breeding.

본 논문에서는 장미과 과수의 유전체 연구의 모델작물인 복숭아 유전체 연구에 대한 동향을 파악해서 국내 복숭아 유전체 연구 방향을 설정하고자 하였다. 분자육종을 위한 기반 연구인 유전자지도는 다양한 교배집단에서 작성되었고, 현재 차세대 염기서열분석을 통해 얻은 대량의 single nucleotide polymorphism 마커를 이용하여 고밀도화시키고 있다. 과실형질, 개화기, 병 저항성 등 질적형질과 양적형질에 관한 분자마커와 양적형질유전자좌가 동정되었고, 이중 과육의 용질성과 핵의 점리 형질에 대한 분자마커를 이용한 조기선발(marker assisted selection)의 활용성은 매우 높다. 애기장대, 포플라, 사과, 딸기 등 다른 작물과의 비교유전체, 복숭아의 성숙 및 발달, 플라보노이드 합성, 수확 후 저장기간에 발현하는 유전자 등에 대한 전사체, 과실 성숙기간에 발현되는 병 저항성 단백질 등에 대한 단백질체 연구도 보고되었다. 현재 차세대 염기서열 분석을 통해 대량 분자마커의 개발, 핵심 유전자원의 구축, 집단의 유전형 분석이 빠르게 진행되고 있다. 이를 통해 농업적으로 유용한 형질에 대해 더 정확한 양적형질 유전자좌 분석과 유용유전자의 개발이 가능하게 되고, 효율적인 분자육종의 기초기반을 구축할 수 있을 것으로 기대한다.

Keywords

References

  1. Abbott AG, Rajapakse S, Sosinski B, Lu ZX, Sossey-Alaoui K, Gannavarapu M, Reighard G, Ballard RE, Baird WV, Scorza R, Callahan A (1998) Construction of saturated linkage maps of peach crosses segregating for characters controlling fruit quality, tree architecture and pest resistance. Acta Hortic 465:41-49
  2. Abbott AG, Verde I (2013). The peach genome: insights on genetic diversity and domestication. Acta Hortic 1084:63-68
  3. Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arus P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819-825 https://doi.org/10.1007/s00122-002-1094-y
  4. Arus P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. p. 175-211. In: Janick J (ed) Plant breeding reviews, vol 27. Wiley, Hoboken
  5. Bailey JS, French AP (1933) The inheritance of certain characteristics in the peach. Proc Am Soc Hort Sci 29:127-130
  6. Bailey JS, French AP (1949) The inheritance of certain fruit and foliage characteristics in the peach. Mass Agr Exp St RE B 452
  7. Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495-507 https://doi.org/10.1007/s11295-007-0126-9
  8. Bliss FA, Arulsekar S, Foolad MR, Becerra V, Gillen AM, Warburton ML, Dandekar AM, Kocsisne GM, Mydin KK (2002) An expanded genetic linkage map of Prunus based on an interspecific cross between almond and peach. Genome 45:520-529 https://doi.org/10.1139/g02-011
  9. Blenda AV, Verde I, Georgi LL, Reighard GL, Forrest SD, Munoz-Torres M, Baird WV, Abbott A (2007) Construction of a genetic linkage map and identification of molecular markers in peach rootstocks for response to peach tree short life syndrome. Tree Genet Genomes 3:341-350 https://doi.org/10.1007/s11295-006-0074-9
  10. Borsani J, Budde CO, Porrini L, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF, Lara MV (2009) Carbon metabolism of peach fruit after harvest: changes in enzymes involved in organic acid and sugar level modifications. J Exp Bot 60:1823-1837 https://doi.org/10.1093/jxb/erp055
  11. Boudehri K, Bendahmane A, Cardinet G, Troadec C, Moing A, Dirlewanger E (2009) Phenotypic and fine genetic characterization of the D locus controlling fruit acidity in peach. BMC Plant Biol 9:59 https://doi.org/10.1186/1471-2229-9-59
  12. Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Hered 81:68-71 https://doi.org/10.1093/oxfordjournals.jhered.a110927
  13. Cantin CM, Crisosto CH, Ogundiwin EA, Gradziel T, Torrents J, Moreno MA, Gogorcena Y (2010) Chilling injury susceptibility in an intra-specific peach [Prunus persica (L.) Batsch] progeny. Postharvest Biol Technol 58:79-87 https://doi.org/10.1016/j.postharvbio.2010.06.002
  14. Chan Z, Qin G, Xu X, Li B, Tian S (2007) Proteome approach to characterize proteins induced by antagonist yeast and salicylic acid in peach fruit. J Proteome Res 6:1677-1688 https://doi.org/10.1021/pr060483r
  15. Claverie M, Bosselut N, Lecouls AC, Voisin R, Lafargue B, Poizat C, Kleinhentz M, Laigret F, Dirlewanger E, Esmenjaud D (2004) Location of independent root-knot nematode resistance gene in plum and peach. Theor Appl Genet 108:765-773 https://doi.org/10.1007/s00122-003-1463-1
  16. Chaparro JX, Werner DJ, O'Malley D, Sederoff RR (1994) Targeted mapping and linkage analysis of morphological isozyme, and RAPD markers in peach. Theor Appl Genet 87:805-815
  17. Dardick CD, Callahan AM, Chiozzotto R, Schaffer RJ, Piagnani MC, Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8:13 https://doi.org/10.1186/1741-7007-8-13
  18. Decroocq V, Foulongne M, Lambert P, Le Gall P, Mantin C, Pascal T, Schurdi-Levraud V, Kervella J (2005) Analogues of virus resistance genes map to QTLs for resistance to sharka disease in Prunus davidiana. Mol Genet Genom 272:680-689 https://doi.org/10.1007/s00438-004-1099-0
  19. Dettori MT, Quarta R, Verde I (2001) A peach linkage map integrating RFLPs, SSRs, RAPDs, and morphological markers. Genome 44:783-790 https://doi.org/10.1139/g01-065
  20. Dhanapal AP, Crisosto CH (2013) Assoiciation genetic of chilling injury susceptibility in peach (Prunus persica (L.) Batsch) across multiply years. Biotech 3:481-490
  21. Dirlewanger E, Bodo C (1994) Molecular genetic mapping of peach. Euphytica 77:101-103 https://doi.org/10.1007/BF02551470
  22. Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genet Genomes 3:1-13 https://doi.org/10.1007/s11295-006-0053-1
  23. Dirlewanger E, Cosson P, Howad W, Capdeville G, Bosselut N, Claverie M, Voisin C Pozat R, Lafargue B, Baron O, Laigret F, Kleinhentz M, Arus P, Esmenjaud D (2004a) Microsatellite genetic linkage maps of myrobalan plum and an almond-peach hybrid-location of root-knot nematode resistance genes. Theor Appl Genet 109:827-838 https://doi.org/10.1007/s00122-004-1694-9
  24. Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arus P (2004b) Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891-9896 https://doi.org/10.1073/pnas.0307937101
  25. Dirlewanger E, Moing A, Rothan C, Svanella L, Pronier V, Guye A, Plomion C, Monet R (1999) Mapping QTL controlling fruit quality in peach (Prunus persica (L.) Batsch). Theor Appl Genet 98:18-31 https://doi.org/10.1007/s001220051035
  26. Dirlewanger E, Pascal T, Zuger C, Kervella J (1996) Analysis of molecular markers associated with powdery mildew resistance genes in peach [Prunus persica (L.) Batsch] $\times$ Prunus davidiana hybrids. Theor Appl Genet 93:909-919
  27. Dirlewanger E, Pronier V, Parvery C, Rothan C, Guye A, Monet R (1998) Genetic linkage map of peach [Prunus persica (L.) Batsch] using morphological and molecular markers. Theor Appl Genet 97:888-895 https://doi.org/10.1007/s001220050969
  28. Dirlewanger E, Quero-Garcia J, Le Dnatec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arus P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 190:208-292
  29. Dominguez I, Graziano E, Gebhardt C, Barakat A, Berry S, Arus P, Delseny M, Barnes S (2003) Plant genome archeology: evidence for conserved ancestral chromosome segments in dicotyledonous plant species. Plant Biotechnol J 1:91-99 https://doi.org/10.1046/j.1467-7652.2003.00009.x
  30. Eduardo I, Pacheco I, Chietera G, Bassi D, Pozzi C, Vecchietti A, Rossini L (2011) QTL analysis of fruit quality traits in two peach intraspecific populations and importance of maturity date pleiotropic effect. Tree Genet Genomes 7:323-335 https://doi.org/10.1007/s11295-010-0334-6
  31. Etienne C, Rothan C, Moing A, Plomion C, Bodenes C, Dumas LS, Cosson P, Pronier V, Monet R, Dirlewanger E (2002) Candidate genes and QTL for sugar and organic acid content in peach (Prunus persica (L.) Batsch). Theor Appl Genet 105:145-159 https://doi.org/10.1007/s00122-001-0841-9
  32. Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917-930 https://doi.org/10.1111/j.1469-8137.2009.03119.x
  33. Foolad MR, Arulsekar S, Becerra V, Bliss FA (1995) A genetic map of Prunus based on an interspecific cross between peach and almond. Theor Appl Genet 91:262-269
  34. Frett TJ, Reighard GL, Okie WR, Gasic K (2014) Mapping quantitative loci associated with blush in peach [Prunus persica (L.) Batsch]. Tree Genet Genomes 10:367-381 https://doi.org/10.1007/s11295-013-0692-y
  35. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2002) Introgression of a polygenic resistance to powdery mildew from wild species Prunus davidiana into peach [Prunus persica (L.) Batsch), a case study of marker assisted selection in fruit tree. Acta Hortic 592:259-265
  36. Foulongne M, Pascal T, Pfeiffer F, Kervella J (2003) QTL for powdery mildew resistance in peach $\times$ Prunus davidiana crosses: consistency across generations and environments. Mol Breed 12:33-50 https://doi.org/10.1023/A:1025417507358
  37. Gillen AM, Bliss FA (2005) Identification and mapping of markers linked to the Mi gene for root-not nematode resistance in peach. J Amer Soc Hort Sci 130:24-33
  38. Georgi LL, Wang Y, Yverggniaux D, Ormsbee T, Inigo M, Reighard GL, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151-1158 https://doi.org/10.1007/s00122-002-0967-4
  39. Gonzalez-Aguero M, Pavez L, Ibanez F, Pacheco I, Campos-Vargas R, Meisel LA, Orellana A, Retamale J, Silvia H, Gonzalez M, Gambianzo V (2008) Identification of wooliness response genes in peach fruit after post-harvest treatments. J Exp Bot 59:1973-1986 https://doi.org/10.1093/jxb/ern069
  40. Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arus P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305-1309 https://doi.org/10.1534/genetics.105.043661
  41. Iezzoni A, Weebadde C, Luby J, Yue CY, van de Weg E, Fazio G, Main D, Peace CP, Bassil NV, McFerson J (2010) RosBREED: enabling marker-assisted breeding in Rosaceae. Acta Hortic 859:389-394
  42. Illa E, Sargent DJ, Lopez Girona E, Bushakra J, Cestaro A, Crowhurst R, Pindo M, Cabrera A, Van der Knapp E, Iezzoni A, Gardiner S, Velasco R, Arus P, Chagne D, Troggio M (2011) Comparative analysis of rosaceous genomes and the reconstruction of a putative ancestral genome for the family. BMC Evol Biol 11:9 https://doi.org/10.1186/1471-2148-11-9
  43. Jauregui B (1998) Identification of molecular markers linked to agronomic characters in an interspecific almond $\times$ peach progeny. University of Barcelona, Spain
  44. Jauregui B, de Vicente MC, Messeguer R, Felipe A, Bonnet A, Salesses G, Arus P (2001) A reciprocal translocation between 'Garfi' almond and 'Nemared' peach. Theor Appl Genet 102:1169-1176 https://doi.org/10.1007/s001220000511
  45. Joobeur T, Periam N, Vicente MD, King GJ, Arus P (2000) Development of a second generation linkage map for almond using RAPD and SSR markers. Genome 43:649-655 https://doi.org/10.1139/g00-040
  46. Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arus P (1998) Construction of a saturated linkage map for Prunus using an almond $\times$ peach F2 progeny. Theor Appl Genet 97:1034-1041 https://doi.org/10.1007/s001220050988
  47. Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arus P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genom 7:81 https://doi.org/10.1186/1471-2164-7-81
  48. Jung S, Jiwan D, Cho I, Lee T, Abbott A, Sosinski B, Main D (2009) Synteny of Prunus and other model plant species. BMC Genom 10:76 https://doi.org/10.1186/1471-2164-10-76
  49. Kim SH, Nam EY, Cho KH, Shin IS, Kim HR, Whang HS (2012) Comparison of transcriptome analysis between red flesh peach cultivar and white flesh peach cultivar using next generation sequencing. J Plnat Biotechnol 39:273-280 https://doi.org/10.5010/JPB.2012.39.4.273
  50. Ku HM, Liu J, Doganlar S, and Tanksley SD (2001) Exploitation of Arabidopsis-tomato synteny to construct a high-resolution map of the ovate containing region in tomato chromosome 2. Genome 44:470-475 https://doi.org/10.1139/g01-024
  51. Lambert P, Hagen LS, Arus P, Audergon JM (2004) Genetic linkage maps of two apricot cultivars (Prunus armeniaca L) compared with the almond Texas $\times$ peach Earlygold reference map for Prunus. Theor Appl Genet 108:1120-1130 https://doi.org/10.1007/s00122-003-1526-3
  52. Lara MV, Borsani J, Budde CO, Lauxmann MA, Lombardo VA, Murray R, Andreo CS, Drincovich MF (2009) Biochemical and proteomic analysis of 'Dixiland' peach fruit (Prunus persica) upon heat treatment. J Exp Bot 60:4315-4333 https://doi.org/10.1093/jxb/erp267
  53. Laurens F, Aranzana MJ, Arus P, Bonany J, Corelli L, Patocchi A, Peil A, Quilot B, Salvi S, van de Weg E, Vecchietti A (2010) Fruit-Breedomics: a new European initiative to bridge the gap between scientific research and breeding Rosaceae fruit tree crops. p. 242. Book of abstracts v 2. IHC Lisbon
  54. Linge CS, Bassi D, Bianco L, Pacheco I, Pirona R, Rossini L (2015) Genetic dissection of fruit weight and size in an F2 peach (Prunus persica (L.) Batsch) progeny. Mol Breed 35:71 https://doi.org/10.1007/s11032-015-0271-z
  55. Lu ZX, Sosinski B, Reighard GL, Baird WV, Abbott AG (1998) Construction of a genetic linkage map and identification of AFLP markers for resistance to root-knot nematodes in peach rootstocks. Genome 41:199-207 https://doi.org/10.1139/g98-008
  56. Marandel G, Pascal T, Candresse T, Decroocq V (2009) Quantitative resistance to plum pox virus in Prunus davidiana P1908 linked to components of the eukaryotic translation initiation complex. Plant Pathol 58:425-435 https://doi.org/10.1111/j.1365-3059.2008.02012.x
  57. Martinez-Garcia PJ, Parfitt DE, Ogundiwin EA, Fass J, Chan HM, Ahmad R, Crisosto CH (2013) High density SNP mapping and QTL analysis for fruit quality characteristics in peach (Prunus persica L). Tree Genet Genomes 9:19-36 https://doi.org/10.1007/s11295-012-0522-7
  58. Monet R (1989) Peach genetics: past, present and future. Acta Hortic 254:49-53
  59. Monet R, Guye A, Roy M, Dachary N (1996) Peach Mendelian genetics: a short review and new results. Agronomie 16:321-329 https://doi.org/10.1051/agro:19960505
  60. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA 104:19363-19368 https://doi.org/10.1073/pnas.0708072104
  61. Nilo R, Saffie C, Lilley K, Baeza-Yates R, Cambiazo V, Campos-Vargas R, Gonzalez M, Meisel LA, Retamales J, Silva H, Orellana A (2010) Proteomic analysis of peach fruit mesocarp softening and chilling injury using difference gel electrophoresis (DIGE). BMC Genomic 11:43 https://doi.org/10.1186/1471-2164-11-43
  62. Ogundiwin EA, Marti C, Forment J, Pons C, Granel A, Gradziel TM, Peace CP, Crisosoto CH (2008) Development of ChillPeach genomic tools and identification of cold-response genes in peach fruit. Plant Mol Biol 68:379-397 https://doi.org/10.1007/s11103-008-9378-5
  63. Pascal T, Pfeiffer F, Kervella J (2010) Powdery mildew resistance in the peach cultivar Pamirskij 5 is genetically linked with the Gr gene for leaf color. HortScience 45:150-152
  64. Peace CP, Callahan A, Ogundiwin EA, Potter D, Gradziel TM, Bliss FA, Crisosto CH (2007) Endopolygalacturonase genotypic variation in Prunus. Acta Hortic 738:639-646
  65. Peace CP, Crisosto CH, Gradziel TM (2005) Endopolygalacturonase: a candidate gene for freestone and melting flesh in peach. Mol Breed 16:21-31 https://doi.org/10.1007/s11032-005-0828-3
  66. Peace CP, Norelli JL (2009) Genomics approaches to crop improvement in the Rosaceae. p. 19-53. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York
  67. Pena-Cortes H, Barrios P, Dorta F, Polanco V, Sanchez C, Sanchez E, Ramirez I (2005) Involvement of jasmonic acid and derivatives in plant responses to pathogens and insects and in fruit ripening. J Plant Growth Regul 23:246-260
  68. Pozzi C, Vecchietti A (2009) Peach structural genomics. p. 235-257. In: Folta KM, Gardiner SE (eds) Genetics and genomics of Rosaceae. Springer, New York
  69. Quarta R, Dettori MT, Sartori A, Verde I (2000) Genetic linkage map and QTL analysis in peach. Acta Hortic 521:233-241
  70. Quarta R, Dettori MT, Verde I, Gentile A, Broda Z (1998) Genetic analysis of agronomic traits and genetic linkage mapping in a BC1 peach population using RFLPs and RAPDs. Acta Hortic 365:51-60
  71. Quilot B, Wu BH, Kervella J, Genard M, Foulongne M, Moreau K (2004) QTL analysis of quality traits in an advanced backcross between Prunus persica cultivars and the wild relative species P. davidiana. Theor Appl Genet 109:884-897 https://doi.org/10.1007/s00122-004-1703-z
  72. Rajapakse S, Bethoff LE, He G, Estager AE, Scorza R, Verde I, Ballard RE, Baird WV, Callahan A, Monet R, Abbott AG (1995) Genetic linkage mapping in peach using morphological, RFLP and RAPD markers. Theor Appl Genet 90:503-510
  73. Renaut J, Hausman J, Bassett C, Artlip T, Cauchie H, Witters E, Wisniewski M (2008) Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genet Genomes 4:589-600 https://doi.org/10.1007/s11295-008-0134-4
  74. Rubio M, Pascal T, Bachellez A, Lambert P (2010) Quantitative trait loci analysis of plum pox virus resistance in Prunus davidiana P1908: new insights on the organization of genomic resistance regions. Tree Genet Genomes 6:291-304 https://doi.org/10.1007/s11295-009-0249-2
  75. Scorza R, Melnicenco L, Dang P, Abbott AG (2002) Testing a microsatellite marker for selection of colummar growth habit in peach (Prunus persica (L.) Batsch). Acta Hortic 592:285-289
  76. Shen Z, Confolent C, Lambert P, Poessel JL, Turion BQ, Yu Mingliang, Ma R, Pascal T (2013) Characterization and genetic mapping of new blood-flesh trait controlled by the single dominant locus DBF in peach. Tree Genet Genomes 9:1435-1446 https://doi.org/10.1007/s11295-013-0649-1
  77. Shimada T, Yamamoto T, Hayama H, Yamaguchi M, Hayashi T (2000) A genetic linkage map constructed by using an interspecific cross between peach cultivars grown in Japan. J Japan Soc Hort Sci 69:536-542 https://doi.org/10.2503/jjshs.69.536
  78. Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach [Prunus persica (L) Batsch]. Theor Appl Genet 101:421-428 https://doi.org/10.1007/s001220051499
  79. Tani E, Polidoros AN, and Tsaftaris AS (2007) Characterization and expression analysis of FRUITFULL- and SHATTERPROOFlike genes from peach (Prunus persica) and their role in split-pit formation. Tree Physiol 27:649-659 https://doi.org/10.1093/treephys/27.5.649
  80. Trainotti L, Bonghi C, Ziliotto F, Zanin D, Rasori A, Casadoro G, Ramina A, Tonutti P (2006) The use of microarray $\mu$ PEACH1.0 to investigate transcriptome changes during transition from preclimacteric to climacteric phase in peach fruit. Plant Sci 170:606-613 https://doi.org/10.1016/j.plantsci.2005.10.015
  81. Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M, Pruss D et al (2010) The genome of the omesticated apple (Malus $\times$ domestica Borkh.). Nat Genet 42:833-839 https://doi.org/10.1038/ng.654
  82. Vendramin E (2006) Application of advanced molecular techniques in peach [Prunus persica (L.) Batsch] breeding to improve fruit quality traits. Dissertation, University of Tuscia, Italy
  83. Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Salamini F (2013) The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45:487-494 https://doi.org/10.1038/ng.2586
  84. Verde I, Lauria M, Dettori MT, Vendramin E, Balconi C, Micali S, Wang Y, Marrazzo MT, Cipriani G, Hartings H, Testolin R, Abbott AG, Motto M, Quarta R (2005) Microsatellite and AFLP markers in the [Prunus persica (L.) Batsch] $\times$ P. ferganensis BC1 linkage map: saturation and coverage improvement. Theor Appl Genet 111:1013-1021 https://doi.org/10.1007/s00122-005-0006-3
  85. Verde I, Quarta R, Cerdrola C, Dettori MT (2002) QTL analysis of agronomic traits in a BC1 peach population. Acta Hortic 592:291-297
  86. Vilanova S, Sargent DJ, Arus P, Monfort A (2008) Synteny conservation between two distantly-related Rosaceae genomes: Prunus (the stone fruits) and Fragaria (the strawberry). BMC Plant Biol 8:67 https://doi.org/10.1186/1471-2229-8-67
  87. Viruel MA, Madur D, Dirlewanger E, Pascal T, Kervella J (1998) Mapping quantitative trait loci controlling peach leaf curl resistance. Acta Hortic 465:79-87
  88. Vizoso P, Meisel LA, Tittarelli A, Latorre M, Saba J, Caroca R, Maldonado J, ambiazo V, Campos-Vargas R, Gonzalez M, Orellana A, Silva H (2009) Comparative EST transcript profiling of peach fruits under different post-harvest conditions reveals candidate genes associated with peach fruit quality. BMC Genom 10:423 https://doi.org/10.1186/1471-2164-10-423
  89. Wang Y, Georgi LL, Reighard GL, Scorza R, Abbott AG (2002) Genetic mapping of the evergrowing gene in peach (Prunus persica (L.) Batsch). J Hered 93:352-358 https://doi.org/10.1093/jhered/93.5.352
  90. Warburton ML, Becerra-Velasquez VL, Goffreda JC, Bliss FA (1996) Utility of RAPD markers in identifying genetic linkages to genes of economic interest in peach. Theor Appl Genet 93:920-925
  91. Wasternack C (2007) Jasmonates, an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann Bot 100:681-697 https://doi.org/10.1093/aob/mcm079
  92. Werner DJ, Creller MA, Chaparro JX (1998) Inheritance of the blood-flesh trait in peach. HortScience 33:1243-1246
  93. Yamamoto T, Shimada T, Imai T, Yaegaki H, Haji T, Matsuta N,Yamaguchi M, Hayashi T (2001) Characterization of morphological traits based on a genetic linkage map in peach. Breed Sci 51:271-278 https://doi.org/10.1270/jsbbs.51.271
  94. Yamamoto Y, Yamaguchi M, Hayashi T (2005) An integrated genetic linkage map of peach by SSR, STS, AFLP, and RAPD. J Jpn Soc Hortic Sci 74:204-213 https://doi.org/10.2503/jjshs.74.204
  95. Zhebentyayeva TN, Horn R, Mook J, Lecouls A, Georgi L, Abbott AG, Reighard GL, Swire-Clark G, Baird WV (2006) A physical framework for the peach genome. Acta Hortic 713:83-88
  96. Zhebentyayeva TN, Swire-Clark G, Georgi LL, Garay L, Jung S, Forrest S, Blenda AV, Blackmon B, Mook J, Horn R, Howad W, Arus P, Main D, Tomkins JP, Sosinski B, Baird WV, Reighard GL, Abbott AG (2008) A framework physical map for peach, a model Rosaceae species. Tree Genet Genomes 4:745-756 https://doi.org/10.1007/s11295-008-0147-z
  97. Zhebentyayeva TN, Fan S, Chandra A, Bielenberg DG, Reighard GL, Okie WR, Abbott AG (2014) Dissection of chilling requirement and bloom data QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genet Genomes 10:35-51 https://doi.org/10.1007/s11295-013-0660-6
  98. Ziliotto F, Begheldo M, Rasori A, Bonghi C, Tonutti P (2008) Transcriptome profiling of ripening nectarine (Prunus persica L. Batsch) fruit treated with 1-MCP. J Exp Bot 59:2781-2791 https://doi.org/10.1093/jxb/ern136
  99. Ziosi V, Bonghi C, Bregoli AM, Trainotti L, Biondi S, Sutthiwal S, Kondo S, Costa G, Torrigiani P (2008) Jasmonate-induced transcriptional changes suggest a negative interference with the ripening syndrome in peach fruit. J Exp Bot 59:563-573 https://doi.org/10.1093/jxb/erm331