• Title/Summary/Keyword: 분자모사

Search Result 181, Processing Time 0.023 seconds

Molecular Dynamics (MD) Study of Polymeric Membranes for Gas Separation (기체 분리용 고분자 분리막의 분자동력학 연구)

  • Park, Chi Hoon;Kim, Deuk Ju;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.24 no.5
    • /
    • pp.341-349
    • /
    • 2014
  • Molecular dynamics (MD) computer simulation is a very useful tool to calculate the trajectory and velocity of particles (generally, atoms), and thus to analyze the various structures and kinetic properties of atoms and molecules. For gas separation membranes, MD has been widely used for structure analysis of polymers such as free volume analysis and conformation search, and for the study of gas transport behavior such as permeability and diffusivity. In this paper, general methodology how to apply MD on gas separation membranes will be described and various related researches will be introduced.

Glyco-MGrid System for Simulation Data Sharing and Re-simulation (시뮬레이션 데이터 공유 및 재 실험을 위한 Glyco-MGrid시스템)

  • Kim, Dong-Kwang;Jeong, Karp-Joo;Lee, Jong-Hyun;Choi, Young-Jin;Jung, Seun-Ho;Hwang, Sun-Tae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.06b
    • /
    • pp.358-362
    • /
    • 2007
  • Glycomics와 Glycobiology는 Oligosaccharides와 Carbohydrate의 구조와 기능을 연구하기 위한 중요한 연구 방법이다. 현재 컴퓨터 시뮬레이션을 이용한 분자 모사 실험이 많은 연구 단체에 의해서 진행되고 있지만, 많은 컴퓨터 자원을 요구하는 문제로 인해서 활발하게 이루어 지지 않고 있는 실정이다. 현 시점에서 이러한 문제를 해결하기 위해서는 많은 자원과 오랜 시간을 소비해서 얻은 결과 데이터를 많은 과학자들에 의해서 공유하고 협업할 수 있는 시스템이 필요하다. Glyco-MGrid시스템은 분자 시뮬레이션 서비스 제공에 중점을 두고 있는 MGrid에서 생성되는 e-Clycomics 데이터들을 통합 관리하기 위한 사이버인프라스트럭쳐이다. 이 Glyco-MGrid는 분자 시뮬레이션의 결과를 통합 관리하기 위한 통합 데이터베이스 제공과 이를 통한 과학자들간의 협업을 지원하기 위해 그리드 기반의 e-Glycomics를 위한 공유, 통합 환경을 제공한다.

  • PDF

A Study on the Development of Multiscale Bridging Method Considering the Particle Size and Concentration Effect of Nanocomposites (나노입자의 크기효과와 체적분율 효과를 동시 고려한 나노복합재의 멀티스케일 브리징 해석기법에 관한 연구)

  • Yang, Seung-Hwa;Yu, Su-Young;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.343-348
    • /
    • 2009
  • In this study, an efficient sequential bridging method to characterize both the particle size effect and concentration effect on the mechanical properties of nanocomposites at high volume fraction is suggested through a molecular dynamics(MD) simulations and micromechanics of composites materials. The Young's modulus and the shear modulus of the nanocomposites at various particle radius and at 12% volume fraction were obtained from MD simulations and multi-inclusion model was adopted to describe both modulus in continuum model. In order to describe the particle size effect, an additional phase, effective interface, was adopted as characteristic phase and the non-dilute concentration effect which appears at 12% volume fraction was describe via the variation of the elastic modulus of the infinite medium. Both the elastic modulus of the interface and infinite medium were fitted into functions of particle radius for the applicability of the present bridging method at various particle radii. Using the present bridging method the elastic modulus of the nanocomposites was efficiently obtained with accuracy. In addition, the effect of the interface thickness and modulus on the elastic modulus of the nanocomposite was investigated.

Characteristics of Kinetic Energy Transfer in Collisions Between Fragile Nanoparticle and Rigid Particle on Surface (승화성 나노 탄환입자와 표면위의 나노 고체입자의 충돌에서의 운동에너지 전달 특성)

  • Choi, Min Seok;Lee, Jin Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.7
    • /
    • pp.595-600
    • /
    • 2014
  • The characteristics of kinetic energy transfer during a collision between a rigid target particle on a surface and a fragile bullet particle moving at a high velocity were analyzed using molecular dynamics simulation. Bullet particles made of $CO_2$ were considered and their size, temperature, and velocity were varied over a wide range. The fraction of kinetic energy transferred from the bullet particle to the target particle was almost independent of the former's size or velocity; however, it was sensitively dependent on its temperature, which can be attributed to the change in the bullet rigidity with temperature. This fraction was nearly twice as high for $CO_2$ bullets as for Ar bullets. This result explains the reason for the more superior cleaning performance of $CO_2$ bullets than Ar bullets with regard to contaminants in the 10 nm size range.

A Simulation Study of Inter Heat Exchanger Process in SI Cycle Process for Hydrogen Production (수소 생산을 위한 SI Cycle 공정에서의 중간 열교환 공정 모사 연구)

  • Shin, Jae Sun;Cho, Sung Jin;Choi, Suk Hoon;Qasim, Faraz;Lee, Heung N.;Park, Jae Ho;Lee, Won Jae;Lee, Euy Soo;Park, Sang Jin
    • Korean Chemical Engineering Research
    • /
    • v.52 no.4
    • /
    • pp.459-466
    • /
    • 2014
  • SI Cyclic process is one of the thermochemical hydrogen production processes using iodine and sulfur for producing hydrogen molecules from water. VHTR (Very High Temperature Reactor) can be used to supply heat to hydrogen production process, which is a high temperature nuclear reactor. IHX (Intermediate Heat Exchanger) is necessary to transfer heat to hydrogen production process safely without radioactivity. In this study, the strategy for the optimum design of IHX between SI hydrogen process and VHTR is proposed for various operating pressures of the reactor, and the different cooling fluids. Most economical efficiency of IHX is also proposed along with process conditions.

Surface Reaction Modeling for Plasma Etching of SiO2 Thin Film (실리콘 산화막의 플라즈마 식각에 대한 표면반응 모델링)

  • Im, YeonHo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.520-527
    • /
    • 2006
  • A realistic surface model is presented for prediction of various surface phenomena such as polymer deposition, suppression and sputtering as a function of incidence ion energy in high density fluorocarbon plasmas. This model followed ion enhanced etching model using the "well-mixed" or continuous stirred tank reactor (CSTR) assumption to the surface reaction zone. In this work, we suggested ion enhanced polymer formation and decomposition mechanisms that can capture $SiO_2$ etching through a steady-state polymer film on $SiO_2$ under the suppression regime. These mechanisms were derived based on experimental data and molecular dynamic simulation results from literatures. The model coefficients are obtained from fits to available beam and plasma experimental data. In order to show validity of our model, we compared the model results to high density fluorocarbon plasma etching data.

Saccharification Characteristics and Kinetic Analysis of Modified Cellulase with a Copolymer (공중합 고분자를 이용한 수식셀룰라아제의 당화 특성 및 반응속도에 관한 연구)

  • 전영호;신호철박진원
    • KSBB Journal
    • /
    • v.11 no.6
    • /
    • pp.712-717
    • /
    • 1996
  • Cellulase was modified with synthetic copolymers of polyoxyethylene derivative and maleic acid anhydride. The saccharification characteristics and enzymatic reaction kinetic mechanism of modified and native cellulases were observed. In modification reaction of cellulase, degree of modification(DM) increased, as mass ratio of copolymers to enzyme increased. Maximum DM was 55% at mass ratio of 4 and remained activity was 75%. In saccharification experiment modified enzyme had maintained higher stability than native enzyme over all the reaction and the final conversion yield of modified enzyme was greater than that of native enzyme. Numerical simulation based on the reaction mechanism considering enzymatic deactivation was performed. Modified enzyme had kept higher free enzyme concentration over all the reaction than that of native enzyme. Comparing calculation values with experimental data, calculation values were in accordance with experimental data.

  • PDF

Development of Multiscale Homogenization Model to Predict Thermo-Mechanical Properties of Nanocomposites including Carbon Nanotube Bundle (탄소나노튜브 다발을 포함하는 나노복합재료의 열-기계 특성 예측을 위한 멀티스케일 균질화 모델 개발)

  • Wang, Haolin;Shin, Hyunseong
    • Composites Research
    • /
    • v.33 no.4
    • /
    • pp.198-204
    • /
    • 2020
  • In this study, we employ the full atomistic molecular dynamics simulation and finite element homogenization method to predict the thermo-mechanical properties of nanocomposites including carbon nanotube bundle. As the number of carbon nanotubes within the single bundle increases, the effective in-plane Young's modulus and in-plane shear modulus decrease, and in-plane thermal expansion coefficient increases, despite the same volume fraction of carbon nanotubes. To investigate the thickness of interphase zone, we employ the radial density distribution. It is investigated that the interphase thickness is almost independent on the number of carbon nanotubes within the single bundle. It is assumed that the matrix and interphase are isotropic materials. According to the predicted thermo-mechanical properties of interphase zone, the Young's modulus and shear modulus of interphase zone clearly decrease, and the thermal expansion coefficient increases. Based on the thermo-mechanical interphase behavior, we developed the multiscale homogenization model to predict the thermo-mechanical properties of PLA nanocomposites that include the carbon nanotube bundle.

Molecular Simulation Studies for Penetrable-Sphere Model: II. Collision Properties (침투성 구형 모델에 관한 분자 전산 연구: II. 충돌 특성)

  • Kim, Chun-Ho;Suh, Soong-Hyuck
    • Polymer(Korea)
    • /
    • v.35 no.6
    • /
    • pp.513-519
    • /
    • 2011
  • Molecular simulations via the molecular dynamics method have been carried out to investigate the dynamic collision properties of penetrable-sphere model fluids. The collision frequencies, the mean free paths, the angle distributions of the hard-type reflection and the soft-type penetration, and the effective packing fractions are computed over a wide range of the packing fraction ${\phi}$ and the repulsive energy ${\varepsilon}^*$. The soft-type collisions are dominated for lower repulsive energy systems, while the hardtype collisions for higher repulsive energy systems. Very interestingly, the ratio of the soft-type (or, the hard-type) collision frequency to the total collision frequency is directly related with the Boltzmann factor of acceptance (or rejection) probabilities in the canonical ensemble Monte Carlo calculations. Such dynamic collision properties are shown to be restricted for highly repulsive and dense systems of ${\varepsilon}^*{\geqq}3.0 $and ${\phi}{\geqq}0.7$, indicating the cluster forming structures in the penetrable-sphere model.

Molecular Dynamics Study to Investigate Ion Selectivity of Functionalized Carbon Nanotube Membranes (기능화된 탄소나노튜브 멤브레인의 이온 선택성에 관한 분자동역학 연구)

  • Suk, Myung Eun
    • Membrane Journal
    • /
    • v.28 no.6
    • /
    • pp.388-394
    • /
    • 2018
  • Carbon nanotube (CNT) based membranes are promising candidates for separation membranes by showing high water transport rate and ion rejection rate according to their radii. The ion selectivity is an important factor to discover the full potential of CNT membranes, and it is affected by the functionalization of CNTs. With multivalent/size ion mixtures, the ion selectivity is affected by not only ion-functional groups interaction but also ion-ion interactions and ion size exclusion in a complex manner. In this study, molecular dynamics simulations are performed to study the ion selectivity of functionalized carbon nanotubes when multivalent/size ions are contained. The permeation energy barriers are calculated by plotting potential of mean force profiles, and various factors, such as CNT size and partial charges, affecting ion selectivity are investigated. The results presented here will be useful for designing CNT membranes for ion separation, biomimetic ion channels, etc.