Browse > Article

Molecular Simulation Studies for Penetrable-Sphere Model: II. Collision Properties  

Kim, Chun-Ho (Department of Chemical Engineering, Keimyung University)
Suh, Soong-Hyuck (Department of Chemical Engineering, Keimyung University)
Publication Information
Polymer(Korea) / v.35, no.6, 2011 , pp. 513-519 More about this Journal
Abstract
Molecular simulations via the molecular dynamics method have been carried out to investigate the dynamic collision properties of penetrable-sphere model fluids. The collision frequencies, the mean free paths, the angle distributions of the hard-type reflection and the soft-type penetration, and the effective packing fractions are computed over a wide range of the packing fraction ${\phi}$ and the repulsive energy ${\varepsilon}^*$. The soft-type collisions are dominated for lower repulsive energy systems, while the hardtype collisions for higher repulsive energy systems. Very interestingly, the ratio of the soft-type (or, the hard-type) collision frequency to the total collision frequency is directly related with the Boltzmann factor of acceptance (or rejection) probabilities in the canonical ensemble Monte Carlo calculations. Such dynamic collision properties are shown to be restricted for highly repulsive and dense systems of ${\varepsilon}^*{\geqq}3.0 $and ${\phi}{\geqq}0.7$, indicating the cluster forming structures in the penetrable-sphere model.
Keywords
dynamic collision properties; penetrable-sphere model; molecular dynamics simulation;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
  • Reference
1 A. Jusufi and C. N. Likos, Rev. Mod. Phys., 81, 1753 (2009).   DOI   ScienceOn
2 C. Marquest and T. A. Witten, J. Phys. France, 50, 1267 (1989).   DOI
3 C. N. Likos, M. Watzlawek, and H. Lowen, Phys. Rev. E, 58, 3135 (1998).   DOI   ScienceOn
4 M. Schmidt, J. Phys.: Condens. Matter, 11, 10163 (1999).   DOI   ScienceOn
5 M. J. Fernaud, E. Lomba, and L. L. Lee, J. Chem. Phys., 112, 810 (2000).   DOI   ScienceOn
6 C. N. Likos, Phys. Rep., 348, 267 (2001).   DOI   ScienceOn
7 M. Schmidt and M. Fuchs, J. Chem. Phys., 117, 6308 (2002).   DOI   ScienceOn
8 N. Choudhury and S. K. Ghosh, J. Chem. Phys., 119, 4827 (2003).   DOI   ScienceOn
9 L. Acedo and A. Santos, Phys. Lett. A, 323, 427 (2004).   DOI   ScienceOn
10 A. Santos, "Kinetic Theory of Soft Matter: The Penetrable- Sphere Model", in Rarefied Gas Dynamics, M. Capitelli, Editor, AIP Conf. Proc. No. 762, AIP, New York, p 276 (2005).
11 A. Malijevsky and A. Santos, J. Chem. Phys., 124, 074508 (2006).   DOI   ScienceOn
12 A. Santos and A. Malijevsky, Phys. Rev. E, 75, 021201 (2007).   DOI
13 A. Malijevský, S. B. Yuste, and A. Santos, Phys. Rev. E, 76, 021504 (2007).   DOI
14 J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Academic, Amsterdam, 2006.
15 S.-C. Kim and S.-H. Suh, J. Chem. Phys., 117, 9880 (2002).   DOI   ScienceOn
16 S.-C. Kim, B.-S. Seong, and S.-H. Suh, J. Chem. Phys., 131, 134701 (2009).   DOI   ScienceOn
17 M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1987.
18 S.-H. Suh, C.-H. Kim, S.-C. Kim, and A. Santos, Phys. Rev. E, 82, 051202 (2010).   DOI
19 C.-H. Kim and S.-H. Suh, Polymer(Korea), submitted.
20 B. J. Alder and T. E. Wainwright, J. Chem. Phys., 31, 459 (1959).   DOI
21 J. M. Haile, Molecular Dynamics Simulation, John Wiley & Sons, Inc., New York, 1992.
22 H. Sigurgeirsson and D. M. Heyes, J. Molec. Phys., 101, 469 (2003).   DOI   ScienceOn
23 J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, John Wiley & Sons Inc., New York, 1954.
24 S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, Cambridge Univ. Press, Cambridge, 1970.
25 N. F. Carnahan and K. E. Starling, J. Chem. Phys., 51, 635 (1969).   DOI
26 S.-H. Suh, W.-K. Min, and J. M. D. MacElroy, Bull. Korean Chem. Soc., 20, 1521 (1999).