• Title/Summary/Keyword: 분수의 기본 계산

Search Result 5, Processing Time 0.026 seconds

An Analysis of Operation Sense in Division of Fraction Based on Case Study (사례 연구를 통한 분수 나눈셈의 연산 감각 분석)

  • Pang, Jeong-Suk;Lee, Ji-Young
    • School Mathematics
    • /
    • v.11 no.1
    • /
    • pp.71-91
    • /
    • 2009
  • The purpose of this study was to analyze operation sense in detail with regard to division of fraction. For this purpose, two sixth grade students who were good at calculation were clinically interviewed three times. The analysis was focused on (a) how the students would understand the multiple meanings and models of division of fraction, (b) how they would recognize the meaning of algorithm related to division of fraction, and (c) how they would employ the meanings and properties of operation in order to translate them into different modes of representation as well as to develop their own strategies. This paper includes several episodes which reveal students' qualitative difference in terms of various dimensions of operation sense. The need to develop operation sense is suggested specifically for upper grades of elementary school.

  • PDF

An Analysis on Elementary Mathematics Curricula and Textbooks of 2009 Revised Version in Korea - Four Issues to Be Improved (2009 개정 초등학교 수학과 교육과정 및 교과서 분석 -개선을 위한 네 가지 문제점-)

  • Kang, Wan
    • School Mathematics
    • /
    • v.15 no.3
    • /
    • pp.569-583
    • /
    • 2013
  • In Korea, the school mathematics curricula have been revised in every average 6 years by the government. From the year 2013, the new revised curricula called 2009 version are implied. The subject of elementary mathematics in this new curricula contains four issues to be improved. First, it should be allowed to call the basic figures such as box, cylinder, ball, quadrilateral, triangle and circle in verbal languages. Second, the name of the activities to define mathematical concepts should be changed from 'Yaksok', which means 'promise' in English, to a better and more honest one. Third, the concave polygons should be treated together with the convex ones. Fourth, the calculations of fractions should be weakened as much as possible for the elementary school children.

  • PDF

주가의 장기적 기억, 자기회귀 분수적불 이동평균 과정과 주가형성

  • Lee, Il-Gyun
    • The Korean Journal of Financial Studies
    • /
    • v.9 no.1
    • /
    • pp.95-118
    • /
    • 2003
  • 한 시계열의 자기상관계수의 절대값을 시차를 무한대로 접근시켜 가면서 각 시차에 대하여 구하고 이 절대값을 모두 더한 값이 무한일 때 이 시계열은 장기기억을 가진다. 이로 인하여 장기기억 모수를 추정하는데에는 자기상관을 기본으로 한다. 표본의 자기상관과 이론적 자기상관 사이의 거리를 최소하여 추정통계량을 유도하고 있는 것이 일반적이다. 이 경우에는 정상적 과정에 한하여 적용이 가능하다. 시계열은 어느 시계열이던지 간에 이 시계열에 적합한 모형이 존재할 것이고 이 모형을 시계열에 적용하면 잔차 시계열을 얻을 수 있다. 원래 시계열의 이론적 상관 대신 원래 시계열의 잔차 시계열의 자기상관과 표본의 자기상관 사이의 거리를 최소하여 추정통계량을 얻으면 통계량의 계산이 편하고 이 추정량은 정상적 시계열과 비정상적 시계열에 다같이 적용할 수 있다. 본 논문에서는 잔차의 자기상관을 이용하여 자기회귀 분수적분 이동평균 과정의 모수 추정량을 도출한다. 그리고 이 추정 통계량에 입각하여 주가의 형성과정을 살펴보고 장기기억이 옵션가격과 포트폴리오 구성에 미치는 영향을 밝힌다.

  • PDF

Commutative Property of Multiplication as a priori Knowledge (선험적 지식으로서 곱셈의 교환법칙 교육의 문제)

  • Yim, Jaehoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.18 no.1
    • /
    • pp.1-17
    • /
    • 2014
  • Instructions for the commutative property of multiplication at elementary schools tend to be based on checking the equality between the quantities of 'a times b 'and b' times a, ' for example, $3{\times}4=12$ and $4{\times}3=12$. This article critically examined the approaches to teach the commutative property of multiplication from Kant's perspective of mathematical knowledge. According to Kant, mathematical knowledge is a priori. Yet, the numeric exploration by checking the equality between the amounts of 'a groups of b' and 'b groups of a' does not reflect the nature of apriority of mathematical knowledge. I suggest we teach the commutative property of multiplication in a way that it helps reveal the operational schema that is necessarily and generally involved in the transformation from the structure of 'a times b' to the structure of 'b times a.' Distributive reasoning is the mental operation that enables children to perform the structural transformation for the commutative property of multiplication by distributing a unit of one quantity across the other quantity. For example, 3 times 4 is transformed into 4 times 3 by distributing each unit of the quantity 3, which results in $3{\times}4=(1+1+1){\times}4=(1{\times}4)+(1{\times}4)+(1{\times}4)+(1{\times}4)=4+4+4=4{\times}3$. It is argued that the distributive reasoning is also critical in learning the subsequent mathematics concepts, such as (a whole number)${\times}10$ or 100 and fraction concept and fraction multiplication.

  • PDF

A Didactical Analysis of the Decimal fraction Concept (소수 개념의 교수학적 분석)

  • Woo, Jeong-Ho;Byun, Hee-Hyun
    • Journal of Educational Research in Mathematics
    • /
    • v.15 no.3
    • /
    • pp.287-313
    • /
    • 2005
  • The decimal fraction concept plays an important role in understanding the real number which is one of the major concepts in school mathematics. In the school mathematics of Korea, the decimal fraction is treated merely as a sort of name of the common fraction, while many other important aspects of the decimal fraction concept are ignored. In consequence students fail to understand the decimal fraction concept properly, and merely consider it as a kind of number for formal computation. Preceding studies also identified students' narrow understanding of the decimal fraction concept. But none of them succeeded in clarifying the essences of the decimal fraction concept, which are crucial for discussing the didactical problems of it. In this study we attempted a didactical analysis of the decimal fraction concept and disclosed the roots of didactical problems and presented measures for its improvement. First, we attempted a phenomenological analysis of the decimal fraction concept and extracted 9 elements of the decimal fraction concept. Second, we has analyzed of the essence of the decimal fraction concept more clearly by relating it to the situations where it functions and its representations. For this we tried to construct the conceptual field of the decimal fraction. Third, we categorized he developmental levels of the decimal fraction concept from the aspect of external manifestation of the internal order. On the basis of these results, we attempted hierarchical structuring of the elements of the decimal fraction concept. And using the results of such a didactical analysis on the decimal number concept we analyzed the mathematics curriculum and textbooks of our country, investigated levels of students' understanding of the decimal fraction concept, and disclosed related problems. Finally we suggested directions and measures for the improvement of teaching decimal fraction concept.

  • PDF