• Title/Summary/Keyword: 분석 및 추론

Search Result 971, Processing Time 0.027 seconds

Implementation and Performance Analysis of An Optimal Energy Management System Using Data Inference and Cloud Hosting Scheme (데이터추론 및 클라우드 호스팅 기법을 활용한 최적 에너지 관리시스템 구현 및 성능분석)

  • Kim, Kyung-Shin;Kang, Moon-Sik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.51-57
    • /
    • 2016
  • In this paper, we propose an optimal energy management system using the data inference scheme and the cloud hosting technique in order to improve the efficiency of the energy management. We have been interested in the issue that the energy-saving and efficient management techniques are very useful for reducing the production and supply of energy. The energy management system refers to the control and management system in order to enable the efficient use of energy and also to maintain a comfortable and functional working environment effectively with the help of a computer. The proposed system controls a variety of equipment for energy management, and also gets the data for the inference from the changes in energy consumption environment, which is implemented to enable efficient energy management by adapting and controlling the changes optimally in the working environment. In order to evaluate the performance of the implemented system, some experiments have been performed under consideration of the monthly electric power consumption on the server that the inference engine is operating for the target facilities. Finally, the results show that the proposed system has a good performance.

A Study of Retrieval Model Providing Relevant Sentences in Storytelling on Semantic Web (시맨틱 웹 환경에서 적합한 문장을 제공하는 이야기 쓰기 도우미에 관한 연구)

  • Lee, Tae-Young
    • Journal of the Korean Society for information Management
    • /
    • v.26 no.4
    • /
    • pp.7-34
    • /
    • 2009
  • Structures of stories, paragraphs, and sentences and inferences applied to indexing and searching were studied to construct the full-text and sentence retrieval system for storytelling. The system designed the database of stories, paragraphs, and sentences and the knowledge-base of inference rules to aid to write the story. The Knowledge-base comprised the files of story frames, paragraph scripts, and sentence logics made by mark-up languages like SWRL etc. able to operate in semantic web. It is necessary to establish more precise indexing language represented the sentences and to create a mark-up languages able to construct more accurate inference rules.

A Study on Data Inference using Machine Learning in WSN Environment (무선 센서 네트워크 환경에서 기계 학습을 이용한 데이터 추론에 관한 연구)

  • Jung, Yong-Jin;Cho, Kyoung-Woo;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.571-573
    • /
    • 2018
  • The loss of data collected from the sensor node in the wireless sensor network environment is caused by the hidden node of the sensor node and power shortage. In order to solve these problems, researches have been actively carried out to maintain the network effectively, but there is no study on the situation where the maintenance of the network is impossible. Therefore, research is needed to infer lost data in situations where network maintenance is impossible. In this paper, use particulate matter data of specific cities to deduce lost data. Analyze the accumulated data through machine learning and identify the possibility of inferring lost data.

  • PDF

Efficient Change Detection between RDF Models Using Backward Chaining Strategy (후방향 전진 추론을 이용한 RDF 모델의 효율적인 변경 탐지)

  • Im, Dong-Hyuk;Kim, Hyoung-Joo
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.125-133
    • /
    • 2009
  • RDF is widely used as the ontology language for representing metadata on the semantic web. Since ontology models the real-world, ontology changes overtime. Thus, it is very important to detect and analyze changes in knowledge base system. Earlier studies on detecting changes between RDF models focused on the structural differences. Some techniques which reduce the size of the delta by considering the RDFS entailment rules have been introduced. However, inferencing with RDF models increases data size and upload time. In this paper, we propose a new change detection using RDF reasoning that only computes a small part of the implied triples using backward chaining strategy. We show that our approach efficiently detects changes through experiments with real-life RDF datasets.

Analyzing Students' Works with Quantitative and Qualitative Graphs Using Two Frameworks of Covariational Reasoning (그래프 유형에 따른 두 공변 추론 수준 이론의 적용 및 비교)

  • Park, JongHee;Shin, Jaehong;Lee, Soo Jin;Ma, Minyoung
    • Journal of Educational Research in Mathematics
    • /
    • v.27 no.1
    • /
    • pp.23-49
    • /
    • 2017
  • This study examined two current learning models for covariational reasoning(Carlson et al.(2002), Thompson, & Carlson(2017)), applied the models to teaching two $9^{th}$ grade students, and analyzed the results according to the types of graphs(a quantitative graph or qualitative graph). Results showed that the model of Thompson and Carlson(2017) was more useful than that of Carlson et al.(2002) in figuring out the students' levels in their quantitative graphing activities. Applying Carlson et al.(2002)'s model made it possible to classify levels of the students in their qualitative graphs. The results of this study suggest that not only quantitative understanding but also qualitative understanding is important in investigating students' covariational reasoning levels. The model of Thompson and Carlson(2017) reveals more various aspects in exploring students' levels of quantitative understanding, and the model of Carlson et al.(2002) revealing more of qualitative understanding.

Method for Inferring Format Information of Data Field from CAN Trace (CAN 트레이스 분석을 통한 데이터 필드 형식 추론 방법 연구)

  • Ji, Cheongmin;Kim, Jimin;Hong, Manpyo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.1
    • /
    • pp.167-177
    • /
    • 2018
  • As the number of attacks on vehicles has increased, studies on CAN-based security technologies are actively being carried out. However, since the upper layer protocol of CAN differs for each vehicle manufacturer and model, there is a great difficulty in researches such as developing anomaly detection for CAN or finding vulnerabilities of ECUs. In this paper, we propose a method to infer the detailed structure of the data field of CAN frame by analyzing CAN trace to mitigate this problem. In the existing Internet environment, many researches for reverse engineering proprietary protocols have already been carried out. However, CAN bus has a structure difficult to apply the existing protocol reverse engineering technology as it is. In this paper, we propose new field classification methods with low computation-cost based on the characteristics of data in CAN frame and existing field classification method. The proposed methods are verified through implementation that analyze CAN traces generated by simulations of CAN communication and actual vehicles. They show higher accuracy of field classification with lower computational cost compared to the existing method.

Does Story Enhance Social Cognitive Ability? Associations between Working Memory and Perspective Taking Ability (이야기는 사회인지능력을 향상시키는가? 작업기억과 관점채택 능력과의 관계)

  • Ahn, Dohyun
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.9
    • /
    • pp.101-111
    • /
    • 2019
  • This study was to examine association between working memory and social cognitive ability, and the influence of story-use on social cognitive ability. To this end, this study measured working memory(via n-back), and randomly assigned 82 participants into three groups(5th level intentionality, 3rd-level intentionality, and exposition conditions), and then compared the accuracy of perspective taking and emotion recognition(RMET: Reading Minds in the Eyes Test) as social cognitive ability. The results suggested that perspective taking accuracy was significantly associated with working memory capacity, whereas emotion recognition accuracy was not. Contrary to the hypothesis, perspective taking in the 5th-level intentionality story group were significantly lower than those in the 3rd-level intentionality story group. Emotions recognition accuracy was not significantly different among the three groups. Overall, this study produced inconsistent results, which has been discussed in terms of theory and methods.

Firework plot for evaluating the impact of outliers in statistical inference (통계적 추론에서 특이점의 영향을 평가하기 위한 탐색적 자료분석 그림도구로서의 불꽃그림)

  • Moon, Sungho
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.1
    • /
    • pp.155-165
    • /
    • 2018
  • Outliers and influential observations often distort many numerical measures for data analysis. Jang and Anderson-Cook (Quality and Reliability Engineering International, 30, 1409-1425, 2014) proposed a graphical firework plot method for exploratory analysis purpose to provide a possible visualization of the trace of the impact of the possible outlying and influential observations on the univariate/bivariate data analysis and regression. They developed 3-D plot as well as pairwise plot for the appropriate measures of interest. We use firework plots as a graphical exploratory data analysis tool to detect outliers and evaluate the impact of outliers in statistical inference.

Scalable Context-Awareness Reasoning System for Business Process (확장성을 갖는 비즈니스 프로세스 상황인식추론시스템)

  • Park, Ui-Su
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.11a
    • /
    • pp.347-350
    • /
    • 2012
  • 비즈니스 프로세스는 네트워크 상황정보와 개인취향정보, 사무환경정보들을 지능적으로 취합, 상황 분석 및 관리하는 서비스지원이 필요하다. 이러한 상황정보의 규모는 시간이 지남에 따라 점점 커지는 특성을 가지고 있어 이에 유연하게 대처하기 위한 확장성이 요구된다. 본 논문에서는 비즈니스 프로세스의 유연한 상황정보 추론을 위하여 가상공간에 대한 구조를 정의하고 재사용이 가능한 컴포넌트로 상황인식 메커니즘을 제공하여 복잡성을 줄이고 확장성을 갖게 되었다. 그리고 추가되거나 변경되는 상황정보를 기반으로 소프트웨어 컴포넌트를 구현하여 내부코드 변화 없이 컴포넌트의 수정으로 확장성을 확보하였다.

이미지 기반 적대적 사례 생성 기술 연구 동향

  • O, Hui-Seok
    • Review of KIISC
    • /
    • v.30 no.6
    • /
    • pp.107-115
    • /
    • 2020
  • 다양한 응용분야에서 심층신경망 기반의 학습 모델이 앞 다투어 이용됨에 따라 인공지능의 설명 가능한 동작 원리 해석과, 추론이 갖는 불확실성에 관한 분석 또한 심도 있게 연구되고 있다. 이에 심층신경망 기반 기계학습 모델의 취약성이 수면 위로 드러났으며, 이러한 취약성을 이용하여 악의적으로 모델을 공격함으로써 오동작을 유도하고자 하는 시도가 다방면으로 이루어짐에 의해 학습 모델의 강건함 보장은 보안 분야에서의 쟁점으로 부각되고 있다. 모델 추론의 입력으로 이용되는 이미지에 교란값을 추가함으로써 심층신경망의 오분류를 발생시키는 임의의 변형된 이미지를 적대적 사례라 정의하며, 본 논문에서는 최근 인공지능 및 컴퓨터비전 분야에서 이루어지고 있는 이미지 기반 적대적 사례의 생성 기법에 대하여 논한다.