• Title/Summary/Keyword: 분극모델

Search Result 74, Processing Time 0.026 seconds

Time-Domain Electromagnetic Coupling in Induced Polarization Surveys on a Uniform Earth (균질대지에 대한 시간영역 유도분극법에 전자기결합)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.19 no.3
    • /
    • pp.193-197
    • /
    • 1986
  • A simple and fast solution is derived to evaluate the effects of time-domain electromagnetic coupling in induced polarization surveys on a uniform earth. The simplified solution gives an explicit statement of the dependence of time-domain electromagnetic coupling on the model parameters, and yields sufficiently accurate results for most situations encountered in practice. The co-linear dipole-dipole and Wenner arrays are used as examples in this paper, but th numerical solution can be applied to any electrode configuration.

  • PDF

Spectral Induced Polarization Characteristics of Rocks in Gwanin Vanadiferous Titanomagnetite (VTM) Deposit (관인 함바나듐 티탄철광상 암석의 광대역 유도분극 특성)

  • Shin, Seungwook
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.4
    • /
    • pp.194-201
    • /
    • 2021
  • Induced polarization (IP) effect is known to be caused by electrochemical phenomena at interface between minerals and pore water. Spectral induced polarization (SIP) method is an electrical survey to localize subsurface IP anomalies while injecting alternating currents of multiple frequencies into the ground. This method was effectively applied to mineral exploration of various ore deposits. Titanomagnetite ores were being produced by a mining company located in Gonamsan area, Gwanin-myeon, Pocheon-si, Gyeonggi-do, South Korea. Because the ores contain more than 0.4 w% vanadium, the ore deposit is called as Gwanin vanadiferous titanomagnetite (VTM) deposit. The vanadium is the most important of materials in production of vanadium redox flow batteries, which can be appropriately used for large-scale energy storage system. Systematic mineral exploration was conducted to identify presence of hidden VTM orebodies and estimate their potential resources. In geophysical exploration, laboratory geophysical measurement of rock samples is helpful to generate reliable property models from field survey data. Therefore, we performed laboratory SIP data of the rocks from the Gwanin VTM deposit to understand SIP characteristics between ores and host rocks and then demonstrate the applicability of this method for the mineral exploration. Both phase and resistivity spectra of the ores sampled from underground outcrop and drilling cores were different of those of the host rocks consisting of monzodiorite and quartz monzodiorite. Because the phase and resistivity at frequencies below 100 Hz are mainly dependent on the SIP characteristics of the rocks, we calculated mean values of the ores and the host rocks. The average phase values at 0.1 Hz were ores: -369 mrad and host rocks: -39 mrad. The average resistivity values at 0.1 Hz were ores: 16 Ωm and host rocks: 2,623 Ωm. Because the SIP characteristics of the ores were different of those of the host rocks, we considered that the SIP survey is effective for the mineral exploration in vanadiferous titanomagnetite deposits and the SIP characteristics are useful for interpreting field survey data.

A Hystesis Loop Modeling of Ferroelectric Thin Film Using Numerical Integration Method (수치적분을 이용한 강유전체의 이력곡선 모델링)

  • 강성준;정양희;유일현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.696-699
    • /
    • 2003
  • In this study, we suggested the model to precisely evaluate the ferroelectric hysteresis loop, using the modified Sawyer-Tower circuit and the ferroelectric capacitor with a MDFM(Metal-Dielectric-ferroelectric-Metal) structure. The mathematical expression of dipole polarization is applied to the numerical integration algorithm, and the fatigue property can be considered including the dielectric layer between ferroelectrics and bottom electrode. The validity of our model is proved comparing the estimated value of our model and the measured results of PLT(10) thin film.

  • PDF

Effect of Concentration Polarization on The Pervaporation of Aqueous Chlorinated-Organic Solution (유기염화물 수용액의 투과증발에 미치는 농도분극의 영향)

  • Cho, Min-Suk;Kim, Seung-Jai;Kim, Jin-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.698-703
    • /
    • 1998
  • The pervaporation experiments of aqueous solutions of trichloroethylene (TCE) and chlorobenzene (CB) through the silicone rubber (polydimethylsiloxane, PDMS) membrane were carried out and the effect of concentration polarization on the separation characteristics was investigated. The resistance-in-series model was used to explain the boundary layer resistance. It was clear that the concentration polarization phenomenon had a significant effect on the permeation behavior in the pervaporation separation of the trace organic chlorides from aqueous solutions. With the same membrane thickness, the permeation of TCE, which has a stronger affinity for the PDMS, appeared to be more influenced by the boundary layer resistance than that of CB. The effect of boundary layer resistance was reduced and the membrane resistance became dominant with increasing membrane thickness at a given hydrodynamic condition. The separation factor was increased to approach the intrinsic separation factor of the membrane with its thickness.

  • PDF

A study on comparison with nonlinear polarizations by the free-rotational dipole model and the phenomenological response theory (자유회전쌍극자 모델과 현상론적 이론에 의한 비선형분극의 비교연구)

  • Lee, Sang-Uk;Yeo, Hee-Chang;Park, Sang-Ho;Kang, Dae-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1507-1510
    • /
    • 2002
  • In this study linear and nonlinear formula were deduced clearly in cases of the free rotational dipole theory and the phenomenological response theory and practical usefullness of formula by these two theories was discussed.

  • PDF

Membrane Fouling in the Membrane Process (분리막공정에서 막오염)

  • 박영규;이영무
    • Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 1996
  • 본 논문에서는 막오염을 일으키는 현상과 원인들을 나름대로 규명하기 위해 고찰 하였고, 이러한 규명은 막오염층 성장모델과 막오염층의 성장요인이 되는 흡착과 대류속도 등으로 나누어서 고찰하였다. 이러한 문제의 근본적인 이해는 막오염의 기초적 이론 지식이 이해되었을 때 막공정의 개발이 향상될 수 있으며 막오염은 농도 분극현상서부터 흡착, 막세공 막힘에 이르기까지 일련의 과정들이 분리돼서 이해될 수 없는 서로의 긴밀하 관계가 유지되므로 종합적인 기초 지식의 열거가 필오하다.

  • PDF

Numerical Analysis of Thermally stimulated current of Ionic Space charge Polarijation by Hopping Model (Hopping 모델에 의한 이온 공간전하분극 숙련재전류의 수치해석)

  • 김의균;국상훈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1990.10a
    • /
    • pp.91-94
    • /
    • 1990
  • The behavior of charged particle in dielectrics have a many effects on characteristics of the insulating materials. In this paper, numerical analysis method by hopping model was investigated application of TSC. As the results, there was a difference between characteristics of TSC by dipole polarization. Physical constant of movable ion corresponding to the experimental results was evaluated and also. Numerical calculations of unsaturated TSC and I-V characteristics were carried out by was of hopping model.

Characterization of a SOFC using impedance spectroscopy and current voltage behavior analysis

  • An, Jin-Su;Park, Yeong-Min;Bae, Hong-Yeol;Song, Jeong-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.70.2-70.2
    • /
    • 2012
  • 고체산화물연료전지의 전기적 성능은 직류를 인가하면서 평형 전위로 부터 과전압(Overpotential) 만큼 멀어지는 셀의 전극 전위를 측정하는 방법으로 분석할 수 있다. 하지만 이러한 직류 상태에서는 측정 시스템에 대해서 얻을 수 있는 정보가 매우 제한 적이다. 따라서 활성화 과전압 (Activation overpotential), 농도 과전압(Concentration overpotential), 저항 과전압 (Ohmic overpotential)등의 전류에 따른 변화가 전기화학의 법칙을 충실히 따른다는 가정하에 측정결과를 수식에 맞추어 역으로 추정하는 회귀 분석 방법이 많이 사용되고 있다. 하지만 고성능의 셀이 될 수록 활성화 분극이나 농도 분극이 전류-전압 선상에서 뚜렷하게 나타나지 않는 경우가 많고, 이러한 상태에서의 회귀 분석은 해는 무한히 많으나 하나의 해 만을 선택하게 되는 경우가 있는 것이 사실이다. 이러한 문제점은 연료전지에 직류와 교류를 동시에 인가하면서 과전압과 임피던스를 상호 비교 분석하면서 보완될 수 있다. 따라서 본 연구에서는 고체산화물연료전지의 직류 인가 상태에서 각 과전압을 간단한 수식을 이용한 회귀 분석으로 추정하고, 이를 다시 임피던스 측정 시 교류 주파수에 따라 나뉜 저항 요소들과 다시 비교하면서 회귀 분석의 신뢰성을 높이는 시도를 하였다. 이러한 과정을 통해 제시된 직류 고전압 모델을 검증하는데 임피던스의 이용이 매우 효과적임을 알 수 있었다.

  • PDF

Simulation of Bi-dispersed Electrorheological Fluids of Different Particle Sizes by the Extended Maxwell-Wagner Polarization Model (확장된 Maxwell-Wagner 분극 모델에 의한 서로 크기가 다른 입자들로 구성된 이성분계 전기유변 유체의 전산 모사)

  • Kim, Young Dae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.4
    • /
    • pp.613-619
    • /
    • 2022
  • The extended Maxwell-Wagner polarization model is employed to describe the ER(Electrorheological) behavior of bi-dispersed ER suspensions, and solutions to the equation of motion are obtained by dynamic simulation. Under the same particle volume fraction, it is found that the dynamic yield stresses of uniform size suspensions do not depend on the particle size. Compared with uniform size suspensions, the dynamic yield stress is reduced for ER fluids consisting of two kinds of particles with different sizes. Compared with the dynamic yield stress behavior, for ${\dot{\gamma}}^*$≧0.01 the shear stress shows different behaviors depending on the particle sizes and the raio of different size particles. The simulation results show the nonlinear ER behavior (∆𝛕 ∝ En, n ≈ 1.55) of the conducting particle ER suspensions.

Utilization of induced polarization for predicting ground condition ahead of tunnel face in subsea tunnelling: laboratory test (유도분극을 활용한 해저터널 굴착면 전방 지반상태 예측: 실내실험)

  • Park, Jinho;Lee, Kang-Hyun;Lee, Seong-Won;Ryu, Young-Moo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.383-392
    • /
    • 2015
  • In subsea tunnelling, prediction of the fractured zone (or water bearing zone) ahead of tunnel face saturated by seawater with high water pressure has been a key factor for safe construction. This study verified the feasibility of utilizing induced polarization (IP) survey at tunnel face for predicting the ground condition ahead of the subsea tunnel face. A pore model was proposed to compute chargeability in granular material, and the relationship correlating chargeability with the variables affecting the chargeability was derived from the model. Parametric study has been performed on the variables to figure out the most influential factors affecting the chargeability. The results of the parametric study show that the size of narrow pores ($r_1$) and the salinity of pore water are the most influential factors on chargeability. Laboratory tests were conducted on various types of ground condition by changing the salinity of pore water, the thickness of the fracture zone and the existence of gouge (weathered granite) within the joints of the fractured zone to figure out the effect of the ground characteristics on the IP phenomenon. Test results show that the chargeability of the fractured zone saturated by seawater increases if the joints in the fractured zone are filled with gouge since the infilled gouge will decrease the size of narrow pores ($r_1$).