• Title/Summary/Keyword: 부착-미끄러짐

Search Result 26, Processing Time 0.024 seconds

Nonlinear Analysis of Cyclically Loaded Concrete-Steel Structures Using an Anchor Bond-Slip Model (앵커 부착-미끄러짐 모형을 이용한 콘크리트-강재 구조물의 비선형 반복하중 해석)

  • Lim, Ju Eun;Lee, Jee Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5A
    • /
    • pp.495-501
    • /
    • 2009
  • In this paper, a numerical anchor bond-slip model is proposed to improve the numerical simulation of concrete-steel structures connected with steel anchor bolts and subjected to extreme cyclic loading. The suggested bond-slip model is composed of a group of nonlinear uniaxial connector elements and its parameters can be determined by calibrating the model with pull-out test data. Numerical analysis results from simulating a concrete foundation-steel column structure using the proposed bond-slip anchor model, which is implemented based on Abaqus elements, and the perfect-bond anchor model are compared with the experimental results. It is concluded that a reasonable anchor bond-slip model is required to realistically simulate concrete-steel structures subjected to extreme cyclic loading, and the proposed anchor bond-slip model shows acceptable performance in the present numerical analysis.

Analysis on the Interfacial Bond-Slip Relationship between ear Surface-Mounted FRP Plate and Concrete (콘크리트내 표면매입 보강된 FRP 판과 콘크리트 사이의 착-미끄러짐 관계 해석)

  • Seo, Soo-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • In this paper, a stress transfer mechanism between near surface-mounted (NSM) fiber reinforced polymer (FRP) plate and concrete was investigated and a reliable analytical procedure for it was presented by using bilinear bond-slip model simulating the bond behavior of NSM FRP plate. As a result, critical values in the bi-linear model such as maximum shear strength, slip at that time and failure slip at the initiation of softening de-bonding were suggested for being used in the differential equation considering he interfacial characteristic between NSM FRP and concrete. Also, it was found that the bond-slip behavior could be suitably redicted by using the proposed procedure even in the case of various bond lengths from the comparison with bond test result.

Bond-Slip Tests of V-ties as a Supplementary Lateral Reinforcement (보조 띠철근으로써 V-타이의 부착-미끄러짐 관계 실험)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.157-158
    • /
    • 2017
  • This tests examined bond stress-slip relationship of V-ties embedded into concrete as a supplementary lateral reinforcement proposed for ductility of concrete flexural members. The different leg shapes of V-ties were prepared as a test parameter. The V-tie with pressed end-legs exhibited 28% higher bond strength than the conventional V-ties, whereas bond stress-slip curves were insignificantly affected by the embedment length of V-ties.

  • PDF

Effect of Bending Angle and Embedment Length on the Bond Characteristics of V-shaped Tie Reinforcement (절곡각 및 묻힘길이에 따른 V형 띠철근의 부착특성)

  • Kim, Won-Woo;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.5
    • /
    • pp.465-471
    • /
    • 2015
  • This study proposed V-shaped tie bar method as an alternative of internal cross-tie for reinforced concrete columns in order to enhance the constructability and confinement effectiveness of the lateral tie bars. A total of 35 pull-out specimens were prepared with the parameters of concrete compressive strength and bending angle and embedment length of the V-shaped bar to examine the bond stress-slip relationship of the V-shaped tie bar. The bond strength of the V-shaped tie bars with the bending angle not exceeding $60^{\circ}$ was higher than the predictions obtained from the equations of CEB-FIP provision. Considering the constructability and bond behavior of the V-shpaed tie bar, the bending angle and embedment length of such bar can be optimally recommended as $45^{\circ}$ and 6db, respectively, where db is the diameter of the tie bar.

Effectiveness of clinical remounting improving balanced occlusion of complete dentures (총의치 균형교합에 영향을 미치는 진료실재부착의 효과)

  • Lee, Ye-Jin;Kim, Jong-Hoi;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.328-334
    • /
    • 2020
  • Clinical remounting of complete denture is performed to refine occlusal harmony in maxillo-mandibular relation. It has been reported that patients who used adjusted dentures with clinical remounting felt less complications such as pain and discomfort in mastication. The purpose of this study was to assess effects of clinical remounting with case series. Seven patients with existing complete prosthesis were included. Clinical remounting procedure was done through interocclusal relation recording. In addition, occlusal force was measured with pressure indicating sensor and occlusal contact areas were evaluated with photo occlusion analysis. Occlusal contact areas of prosthesis were enlarged, while bite pressure was not increased. Hit and slide phenomenon of prosthesis was reduced concurrently. Clinical remounting procedure improved denture stability and increased occlusal contact area. Therefore, clinical remounting should be considered.

Applications of Interface Elements to Contact Problems in Reinforced Concrete Structures (경계면 요소를 이용한 철근콘크리트 접촉면의 응력해석)

  • 최완철;정일영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.90-96
    • /
    • 1992
  • 경계면 요소를 이용하여 철근콘크리트 구조물의 접촉면 문제를 유한 요소법으로 해석하는 기법에 대하여 연구한다. 본 연구에서는 경계면 요소의 수치해석의 이론과정을 전개하고, 실험 관찰된 부착 시험체에 적용하여 이형철근과 콘크리트 부착기구의 접촉면을 해석한다. 경계면은 특별한 연결요소를 이용하여 재현하며 Mohr-Coulomb의 마찰 이론을 응응한다. 해석의 주요점으로 하중상태에 따라 변화되는 경계면의 접촉상태, 즉 고정(stick), 미끄러짐(slide), 분리(separation)를 묘사하여 경계면 재료의 비선형 거동을 관찰한다. 부착모델의 해석결과는 실험실의 결과와 대체로 일치되며 따라서 철근콘크리트 접촉면의 응력해석을 위해 경계면 요소가 활용될 수 있음을 보여준다.

  • PDF

Mechanical Behavior of High-tension Bolted Joints with Varying Bolt Size and Plate Thickness (볼트의 크기 및 판두께의 차이에 따른 고장력볼트 이음부의 역학적 거동에 관한 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Sung Hoon;Park, Cheol Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.67-74
    • /
    • 2006
  • The use of steel plates has been greatly increased in bridge construction, particularly for long-span bridges. For connections of those steel plates in the field, application of high-tension bold, such as M30, is highly demanded. However, the current steel construction specifications in Korea do not provide information for large-sized bolt connections. In order to evaluate the applicability of the large-sized high-tension bolt, this study experimentally investigates relaxation and slip behavior of M30 bolts with varying bolt size and plate thickness. In addition, internal compressive stress was computed using FEM analysis. The analyzed results were compared with the stress distribution measured from strain gages attached on bolts and bolt holes. From the study presented herein, the M30 high-tension bolts are anticipated to be successfully used with the relaxation less than 10% and the slip coefficient satisfying the specified limit.

Development of a Walking-type Solar Panel Cleaning Robot Capable of Driving on Inclined Solar Panel (경사진 패널 위에서 주행이 가능한 보행형 태양광 패널 청소로봇 시스템 개발)

  • Park, Sunggwan;Jang, Woojin;Kim, Dong-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.5
    • /
    • pp.79-88
    • /
    • 2020
  • This paper propose the method to drive a solar panel cleaning robot efficiently on an inclined panel using vacuum pad pressure. In this method, the rubber pads using the vacuum pressure are used to attach robot body to the panel surface. By applying the linkage mechanism to the vacuum pads, it was possible to reduce robot weight and power consumption and to prevent slipping of the robot. In addition, the use of solenoid valves, proximity sensors, and encoders to detect movement of the robot body and the control of the pad pressure dedicate to the driving of the robot on an inclined panel. In order to move the robot forward, the operation sequence of multiple solenoid valves was completed, and the six vacuum pads mounted to both legs were accurately controlled to form vacuum and atmospheric pressure in right order so that the robot could move forward without slipping. At last, it was confirmed through experiments that straight-forward moving and rotational movement could be performed up to 36 degrees of inclination angle of solar panel.

Bond Capacity of Pseudo-Ductile FRP Hybrid Sheet to Strengthen RC Members (철근콘크리트 부재 보강용 유사연성 FRP 하이브리드 시트의 부착 특성)

  • Yoon, Hye-Sun;Lee, Jung-Mi;Lee, Chin-Yong;Choi, Dong-Uk;Kim, Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • 12 concrete blocks, on which hybrid fibrous sheets (carbon fiber and glass fiber) had been bonded, were subjected to tensile load in order to estimate properties of the bonded interface. the sheet length was varied by 100mm, 200mm and 400mm. It was found that more than 150mm bond length is required to achieve the maximum bearing capacity of the interface. In this study, maximum bond stress $\tau_{F,max}$, ultimate slip $S_{FU}$ of the interface were estimated $\tau_{F,max}$=3.0MPa and $S_{FU}$= 0.175mm, respectively.

Effect of Corrosion Level and Crack Width on the Bond-Slip Behavior at the Interface between Concrete and Corroded Steel Rebar (부식 수준 및 균열폭에 따른 부식된 철근과 콘크리트 계면의 부착-미끄러짐 거동 )

  • Sang-Hyeon Jo;Seong-Hoon Kee;Jung-Jae Yee;Changkye Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 2023
  • In this paper, the effect of corrosion level and crack width on the cohesive strength-slip behavior of corroded steel rebar and concrete interface is conducted. The existing studies mainly focus on the decrease in bond strength with respect to the level of corrosion; there are, however, few studies on the decrease in cohesive strength according to the crack width of the concrete surface due to corrosion. Therefore, in this study, a series of tests for the cohesive strength, slip behavior and mass loss of the reinforcing bar is evaluated at the surface of corroded rebar and concrete. It is found that the tendency to decrease the bond strength is closely related to the crack width rather than the corrosion level. Hence, to determine the degradation performance for the bond strength-slip behavior relation, the occurrence of cracks on the concrete surface can be a suitable index.