• Title/Summary/Keyword: 부착 강도

Search Result 1,413, Processing Time 0.033 seconds

A Study on Improvement of Bonding Shear Strength of Geogrid-Reinforced Asphalt Pavements (섬유보강 아스팔트 포장 부착 전단강도 개선방안 연구)

  • Park, Sang Gu;Kim, Ki Hyun;Kwon, Soo Ahn;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5D
    • /
    • pp.619-625
    • /
    • 2009
  • Test constructions were performed at 3 sites to investigate ways for maximizing performance of geogrid-reinforced asphalt pavements known to reduce reflection cracking and rutting. Problems during construction operation which can affect bonding shear strength of the geogrid-reinforced asphalt pavements were defined and the construction conditions were intentionally made during the test constructions. Both immediately and 1year after the test constructions, cores were obtained from positions with good and bad construction conditions and then bonding shear strength tests were performed to be compared each other. Rules to be kept at construction sites were suggested to improve performance of the geogrid-reinforced asphalt pavements.

Post-Thermal Exposure Bond Strength Properties of CFRP and GFRP in Concrete (콘크리트 고온 가열 이후 CFRP와 GFRP의 부착강도 특성)

  • Kim, Ju-Sung;Jeong, Su-Mi;Kim, Young-Jin;Park, Sun-Gyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.5
    • /
    • pp.509-517
    • /
    • 2023
  • The surge in FRP(Fiber Reinforced Plastic) research signifies the industry's pursuit to counteract the longstanding issue of rebar corrosion. Notably, Carbon Fiber Reinforced Plastic(CFRP) emerges as a commendable alternative, given its superior resistance to both corrosion and chemical interactions, thus positing itself as a potential replacement for traditional steel rebars. However, the layered composition of fibers and resin in CFRP flags a notable susceptibility to elevated temperatures. Despite its promise, comprehensive studies elucidating the full spectrum of CFRP properties remain ongoing. In this investigative study, we meticulously assessed the bond strength of CFRP post-exposure to high thermal conditions. Our findings underscored a parity in bond strength amongst silica sand-coated CFRP, rib-type CFRP, and Glass Fiber Reinforced Plastic(GFRP).

Bond Strength of Near Surface-Mounted FRP Plate in Concrete Corresponding to Space and Bond Length (콘크리트에 표면매입 보강된 FRP판의 매입간격과 길이에 따른 부착강도)

  • Seo, Soo-Yeon;Kim, Min-Sik
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2013
  • Recently, experimental and analytical researches have been performed in order to find interface failure between FRP plate and concrete in near surface-mounted (NSM) retrofit using FRP plate. As a result, it was found that the bond strength between concrete and NSM FRP plate had a close relationship with shape of FRP, concrete compressive strength and bond length. However, research need is increasing about another factors such as suitable space of FRP plate and group effect. In this study, therefore, a bond test was performed with aforementioned factors and compared with a previous equation to verify its suitability for predicting bond strength of NSM FRP plate. From the test, it was found that the bond strength increased according to the increase of space of NSM FRP plates even if its bond length was same. The splitting failure of concrete governed when space of FRPs was too narrow and it changed to FRP's tensile failure with increase of the space. From the evaluation of test specimens using previous equation, it was found that the bond strength could be predicted properly with consideration of group effect.

An Experimental Study on the Effects of Early-age Vibrations for Properties of Concrete (진동이 양생초기 콘크리트에 미치는 영향에 관한 연구)

  • 오병환;송혜금;조재열
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.5
    • /
    • pp.81-87
    • /
    • 1998
  • 최근 들어 교통난 해소를 위한 도로확폭 공사나 파일항타 및 발파 등의 공사가 많이 진행되고 있으며, 이러한 경우 진동의 영향으로 콘크리트의 품질 저하에 영향을 미칠 것으로 예상된다. 이에 따라 본 연구에서는 진동과 굳지 않은 콘크리트에 미치는 영향을 평가하기 위하여 실험변수를 진동속도, 진동발생점등으로 나누어, 콘크리트의 압축강도, 부착강도를 측정하였다. 또한 응결시간을 측정하여 외부 진동용인이 응력에 미치는 영향을 평가하였다. 진동속도는 0.25cm/sec ~4.2cm/sec까지 변화시켰고, 진동가력시점은 타설 직후(0시간)부터 타설 후 2, 4, 6, 12 시간 후 에 진동을 가하였다. 본 연구의 실험 결과 진동속도 0.25cm/sec 에서는 압축 강도와 부착강도가 증가하는 반면에 진동속도 0.5cm/sec 이상에서는 압축강도는 5~12% 정도 감소하고 부착강도도 이와 유사하게 감소하는 것으로나타나고 있다. 응결시간은 0.25cm/sec의 작은 진동에서는 영향이 거의 없으나 0.5cm/sec 이상에서는 타설 직후의 진동시 응결시간이 다소 빨라지는 것으로 나타났다. 본 연구 결과, 양생초기 콘크리트의 진동 허용치는 약 0.3~0.4cm/sec 로 나타나고 있으며, 이것은 앞으로 실제 구조물의 시공시 진동규제치로서 하나의 유용한 자료가 될 수 있을 것으로 사료된다.

An experimental study on the Free stream turbulence of Floating body with vertical plate (연속부착된 수직평판을 갖는 부유구조물 후류의 자유유동 난류강도에 대한 실험적연구)

  • Kim, Ho;Oh, Kyoung-Gun;Gim, Ok-Sok;Lee, Gyoung-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.125-126
    • /
    • 2007
  • In this paper, the floating body with vertical plate is introduced with a study on the flow patterns and characteristics in around the floating body by using 2 frame particle tracking method. This paper introduce an analysis method to predict the characteristics if flow around the neighboring fields if Floating Body with vertical plate in order to investigate a high performance model. Flow visualization has conducted in a drcu1ating water channel by a high speed camera and etc. Flow phenomena according to turbulence intensity distribution and flow separation around the floating body with vertical plate were obtained by two-dimensional PIV system.

  • PDF

An Experimental Study on Splitting Bond Strength of RC Column Reinforced with External Steel-Band (스틸밴드로 외부 보강된 철근콘크리트 기둥의 부착강도에 관한 실험적 연구)

  • Kim, Chang-Sik;Yoon, Seung-Joe;Ho, Seung-Woong;Yoon, Pil-Joong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.41-49
    • /
    • 2014
  • In order to investigation splitting bond strength of the deformed longitudinal reinforcing bars in the R C members strengthened laterally with the external steel-band, a total 9 sets of test re-bars with and without active confining force given by the external steel-band are pulled monotonically until failure. Test results indicate that the bond strength becomes higher with the increase in number of steel-band sets and their initial stress magnitude. This is due to the active confining force given by the steel-band, and passive confining forces given by the steel-band and transverse reinforcements, in which the passive confinement effect varies depending on the magnitude of active confining force. An equation to estimate the splitting bond strengths for the R C members strengthened laterally with the external steel-band is developed based on the several experimental results of the present study.

An Experimental Study on the Bond Strength of Polymer-Modified Mortars (폴리머 시멘트 모르타르의 부착강도에 대한 실험적 연구)

  • Park, Hun-Il;Song, Ki-Min;Park, Sang-Sun;Sin, Hong-Chul;Sin, Ju-Jae;Kim, Young-Kun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.629-632
    • /
    • 2008
  • In the concrete repairing industry, it's very significant to apply adequate repair materials and construction method in order to extend service life of deteriorated concrete structure efficiently. also, adequate diagnosis of deteriorated structure's status should be involved. This paper describes an investigation of bond strength of polymer modified mortar applied both old deteriorated concrete surface substrate and well cured new concretes. The purpose of this investigation is comparing how much the tensile bond strength on construction site is different from laboratory test results. in the results of investigation, most of sample tested in laboratory is in compliance with KS F 4042's specification. and most of results of construction site are not in compliance with the specification cause of low tensile strength of concrete's surface.

  • PDF

Evaluation of the Bonding Behavior of the Rehabilitation Method Applying Carbon Fiber Subjected to the Variation of Environmental Condition (탄소섬유 접착 보강공법의 환경변화에 따른 부착특성 평가)

  • Han, Cheon Goo;Byun, Hang Yong;Park, Yong Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.67-74
    • /
    • 2008
  • This paper provides the test results of bonding behavior of the interface between concrete substrate and carbon fiber in the rehabilitation method applying carbon fiber with epoxy based resin adhesive. The difference in each components was gradually increased subjected to the repetition of temperature variation, regardless of the strength of the substrate concrete, while the ultrasonic interface between each component occurred. An increase in difference of the temperature resulted in a decrease in bond strength of each component. Associated failure mode was shown to be interfacial failure and substrate concrete failure. No remarkable changes were found in the deformation and ultrasonic velocity of each component until the four cycles of the dry and moisture test. Hence, the moisture condition may not affect the bonding behavior of each component. After the repetition of dry and moisture test, corresponding bond strength was reduced to 40% of that before test. For the effect of freeze and thaw test, the cycle of freeze and thaw within 4 cycles resulted in debonding of each component.

Shear Bond Strength of 3D Printed Concrete Layers According to Water Cement Ratio and Printing Time Gap (물시멘트비와 프린팅 시간간격에 따른 3D 프린팅 콘크리트 레이어의 전단부착강도)

  • Kim, Jin-Ho;Lee, Yoon Jung;Jeong, Hoseong;Kim, Kang Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.199-208
    • /
    • 2021
  • The extrudability of 3D printed concrete and its member strength can be highly influenced by water cement ratio (W/C) and printing time gap (PTG). In this study, mold cast specimens and 3D printed specimens were fabricated with variables of W/C ratio and PTG, and their shear bond strength and interlayer surface moisture content were measured and analyzed. The test results showed that the shear bond strength is greatly influenced by the amount of interlayer surface moisture. It is thus recommended that proper amount of interlayer surface moisture with respect to PTG needs to be maintained to have a required interlayer shear bond strength. In addition, further research is required to estimate the effect of many environmental factors that can influence the interlayer surface moisture content.

Ecological Study of Periphytons Along the Buk-han River Due To the Influence of Land Use Patterns (유역토지이용에 따른 북한강 상류 수계 부착조류에 대한 연구)

  • Kang, Jung-In;Lee, Sang-Don
    • Journal of Wetlands Research
    • /
    • v.13 no.3
    • /
    • pp.643-655
    • /
    • 2011
  • This study addresses the periphytons along the Bukhan river stream and examines the biological indices that represents the river and estimate water quality assessment. Bukhan river in 4 major watershed streams (Bukchon-Hangeychon, Narinchon, Inbukchon, and Soyang river) was selected in 9 points. Land use pattern along the streams showed marked differenced in agriculture areas and forest areas. Lower Soyang streams showed blue-green algae and green algae also appeared in evenly pattern. Thus, the pollution source, biomass and distribution are somewhat correlated, and BOD, SS, biodiversity, and evenness showed a similar pattern. This situation can lead to conclusion of oligotrophic lake with good condition. Therefore, current biological index and is not so desirable for stream degree standard water quality and nutrient level.