DOI QR코드

DOI QR Code

Shear Bond Strength of 3D Printed Concrete Layers According to Water Cement Ratio and Printing Time Gap

물시멘트비와 프린팅 시간간격에 따른 3D 프린팅 콘크리트 레이어의 전단부착강도

  • 김진호 (서울시립대학교 건축공학과) ;
  • 이윤정 (서울시립대학교, 건축공학과 스마트시티융합전공) ;
  • 정호성 (서울시립대학교, 건축공학과 스마트시티융합전공) ;
  • 김강수 (서울시립대학교, 건축공학과 스마트시티융합전공)
  • Received : 2021.10.29
  • Accepted : 2021.12.06
  • Published : 2021.12.31

Abstract

The extrudability of 3D printed concrete and its member strength can be highly influenced by water cement ratio (W/C) and printing time gap (PTG). In this study, mold cast specimens and 3D printed specimens were fabricated with variables of W/C ratio and PTG, and their shear bond strength and interlayer surface moisture content were measured and analyzed. The test results showed that the shear bond strength is greatly influenced by the amount of interlayer surface moisture. It is thus recommended that proper amount of interlayer surface moisture with respect to PTG needs to be maintained to have a required interlayer shear bond strength. In addition, further research is required to estimate the effect of many environmental factors that can influence the interlayer surface moisture content.

3D 프린팅 콘크리트의 출력성능 및 부재 강도는 물시멘트비(Water cement ratio, W/C)와 레이어의 프린팅 시간 간격(Printing Time Gap, PTG)에 의하여 큰 영향을 받을 수 있다. 이 연구에서는 W/C와 PTG를 변수로 하여 제작된 프린팅실험체와 몰드 실험체의 표면수분량과 전단부착강도와의 관계를 측정·고찰하였으며, 그 결과, 레이어표면수분량이 전단부착강도에 큰 영향을 주는 것으로 나타났다. 따라서, 3D 프린팅 출력 시 요구되는 레이어 계면 전단부착성능을 확보하기 위해서는 PTG에 따라 적절한 레이어표면수분량이 유지될 수 있도록 유의해야 하며, 레이어표면수분량에 영향을 줄 수 있는 여러 가지 프린팅 환경인자들 대한 후속 연구도 필요할 것으로 판단된다.

Keywords

Acknowledgement

본 연구는 2019년도 정부(교육과학기술부)의 재원으로 한국연구재단 중견연구의 지원을 받아 수행되었습니다. (과제번호: NRF-2019R1A2C2086388).

References

  1. Beushausen, H., and Alexander, M. G. (2008), Bond strength development between concretes of different ages, Magazine of Concrete Research, ICE, 60(1), 65-74. https://doi.org/10.1680/macr.2007.00108
  2. Bos, F., Wolfs, R., Ahmed, Z., and Salet, T. (2016), Additive manufacturing of concrete in construction: potentials and challenges of 3D concrete printing, Virtual and Physical Prototyping, Taylor & Francis, 11(3), 209-225. https://doi.org/10.1080/17452759.2016.1209867
  3. Buswell, R. A., Leal de Silva, W. R., Jones, S. Z., and Dirrenberger, J. (2018), 3D printing using concrete extrusion: A roadmap for research. Cement and Concrete Research, ELSEVIER, 112, 37-49. https://doi.org/10.1016/j.cemconres.2018.05.006
  4. Choi, S. I., Lee, S. W., Son, T. H., and Heo, Y. K. (2020), Demand and Prospect in Future Korea Construction Industry based on Questionnaire Survey, Research report, Construction & Economy Research Institute of Korea, 1-79 (in Korean, with English abstract).
  5. Kim, G. S., Sung, Y. J., and Han, Y. S. (2020), Industrial strategy in the post-COVID-19 and New Normal, Issue & Analysis, Gyeonggi Research Institute, 411, 1-25 (in Korean).
  6. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., and Thorpe, T. (2012(a)), Hardened properties of high-performance printing concrete, Cement and Concrete Research, ELSEVIER, 42, 558-566. https://doi.org/10.1016/j.cemconres.2011.12.003
  7. Le, T. T., Austin, S. A., Lim, S., Buswell, R. A., Law, R., Gibb, A. G. F., and Thorpe, T. (2012(b)), Mix design and fresh properties for high-performance printing concrete, Materials and Structures, Springer, 45, 1221-1232. https://doi.org/10.1617/s11527-012-9828-z
  8. Marchment, T., Sanjayan, J., and Xia, M. (2019), Method of enhancing interlayer bond strength in construction scale 3D printing with mortar by effective bond area amplification, Materials and Design, ELSEVIER, 169, 1-9.
  9. Panda, B., Paul, S. C., Mohamed, N. A. N., Tay, Y. W. D., and Tan, M. J. (2018), Measurement of tensile bond strength of 3D printed geopolymer mortar, Measurement, ELSEVIER, 113, 108-116. https://doi.org/10.1016/j.measurement.2017.08.051
  10. Putten, J. V. D., Schutter, G. D., and Tittelboom, K. V. (2019), Surface modification as a technique to improve inter-layer bonding strength in 3D printed cementitious materials, RILEM Technical Letters, RILEM, 4, 33-38. https://doi.org/10.21809/rilemtechlett.2019.84
  11. Sakka, F. E., Assaad, J. J., Hamzeh, F. R., and Nakhoul, C. (2019), Thixotropy and interfacial bond strengths of polymer-modified printed mortars, Materials and Structures, Springer, 52(79), 1-17. https://doi.org/10.1617/s11527-018-1302-0
  12. Sanjayan, J. G., Nematollahi, B., Xia, M., and Marchment, T. (2018), Effect of surface moisture on inter-layer strength of 3D printed concrete, Construction and Building Materials, ELSEVIER, 172, 468-475. https://doi.org/10.1016/j.conbuildmat.2018.03.232
  13. Tay, Y. W. D., Panda, B., Paul, S. C., Mohamed, N. A. N., Tan, M. J., and Leong, K. F. (2017), 3D printing trends in building and construction industry: a review, Virtual and Physical Prototyping, Taylor & Francis, 12(3), 261-276. https://doi.org/10.1080/17452759.2017.1326724
  14. Tay, Y. W. D., Ting, G. H. A., Qian, Y., Panda, B., He, L., and Tan, M. J. (2019), Time gap effect on bond strength of 3D-printed concrete, Virtual and Physical Prototyping, Talyor & Francis, 14(1), 104-113. https://doi.org/10.1080/17452759.2018.1500420
  15. Zareiyan, B., and Khoshnevis, B. (2017), Effect of interlocking on interlayer adhesion and strength of structures in 3D printing of concrete, Automation in Construction, ELSEVIER, 83, 212-221. https://doi.org/10.1016/j.autcon.2017.08.019