• Title/Summary/Keyword: 부착 강도

Search Result 1,415, Processing Time 0.026 seconds

Characteristics of Bond Strength as Types of Primer for the Facilities of Anti-corrosion Waterproofing Materials by the Reversed Pressure and Concrete Surface Condition (내부 방수⋅방식재의 프라이머 종류별 역수압 작용 및 콘크리트 표면 상태에 따른 부착강도 특성)

  • Oh, Sang-Keun;Heo, Neung-Hoe;Shin, Hong-Chul;Choi, Sung-Min
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.68-74
    • /
    • 2014
  • Recently, concrete facility as advanced water treatment facilities is extending in the water treatment facilities according to raise awareness of pure drinking water and delicious water. For this reason, it is increased to the necessity need to make the standard and the development of waterproofing and anti-corrosion materials for concrete structures applied water treatment tank. So, related research has become active recently. However, as the limit of research focused on durability improvement of top coating material, it is insufficient to study on the adhesion strength between the concrete surface and primer. Therefore, there is to confirm the adhesion of between concrete surface and the three primers used as anti-corrosion waterproofing materials, and to investigate the properties of adhesion strength according to the condition such as dry condition, wet condition, and water pressure condition of the concrete surface in this study.

Evaluation of Adhesion Performance of High-Fireproofing Alumino-silicate Inorganic Mortar (알루미노 실리케이트계 고내화성 모르타르의 부착성능 평가)

  • Cho, Hyeon-Seo;Lee, Gun-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.569-576
    • /
    • 2018
  • In modern society, a huge number of the buildings have been constructed with RC structure. RC structures have many structural instabilities due to earthquake, typhoon, construction fault, design phase errors. Therefore, many reinforcement methods are being implemented to solve this problem. In the reinforcement method, the organic epoxy adhesive used in the FRP reinforcing method is abruptly damaged when exposed to high temperature, which is directly connected to the fall of the reinforcing material. Therefore, the present study was conducted to develop inorganic refractory mortar with a certain level of adhesion ability to reduce the heat transferred to FRP reinforcement when exposed to high temperatures. As a result of the test, it showed high adhesion strength at room temperature condition with the inclusion of EVA resin, and showed no performance deterioration up to about $300^{\circ}C$ even under heating conditions. Also, it was confirmed that the backside temperature was lower as the thickness increased, and converged to a constant temperature of about $780^{\circ}C$ after 2 hours of heating.

A Study on Methodology for Improvement of Bond of FRP reinforcement to Concrete (초단유리섬유(milled glass fibers)와 에폭시 혼합물을 이용한 FRP 보강근 표면성형기법 연구)

  • Moon, Do-Young;Sim, Jongsung;Oh, Hongseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.775-785
    • /
    • 2006
  • This study focused on the development of surface deformations of GFRP rebars with a better bond characteristic for reinforcing concrete, and simultaneously, of GFRP rebars with more simple and economic production process. This research paper describes a development and bond performance of GFRP rebar with molded deformations, which is composed of polymer resin and milled glass fiber. To determine proper mix ration of milled fibers, material test of hardened epoxy and pullout tests of GFRP rebar with various mix ratio were conducted. The test results indicate that the new strategy of using a mixture of epoxy resin and milled fiber could be successfully applied to a surface structure of GFRP rebar to enhance bond with concrete. The bearing resistance of the ribs was further enhanced by the milled fibers at mechanical and environmental loading state.

Evaluation for Bond between Rock and Grouting (암반과 그라우팅 접촉면의 부착력 평가를 위한 실내 실험)

  • Kim, Young-Uk;Park, Ji-Ho;Cho, Sung-Kuk;Hur, Kab-Soo;Lee, Choong-Ryul;Jeong, Kyeong-Han
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.12a
    • /
    • pp.868-870
    • /
    • 2009
  • 이 연구에서는 암반에 마이크로 파일을 그라우팅하여 시공할 경우에 암반과 그라우트 접촉면에 발생되는 부착력을 특수 제작된 부착력실험용 몰드와 만능시험기를 이용하여 측정하고 그라우팅 방법(압력식, 중력식)을 달리하여 비교 분석하였다. 실험결과 압력식의 부착력과 일축압축강도가 중력식보다 크게 나타났다.

  • PDF

Comtribution of surface deformations of GFRP rebar to bond to Concrete (GFRP 보강근 표면이형의 부착성능 기여도에 대한 고찰)

  • Moon, Do-Young;Sim, Jong-Sung;Oh, Hong-Seob;Sim, Jun-Gee;Kim, Jin-Gyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.19-20
    • /
    • 2009
  • Bond of deformed type of GFRP rebar, which has deformations resembles that of ordinary steel rebar, to concrete was investigated experimentally and numerically in this paper. Due to the lower stiffness and strength in shear, surface deformations do not fully works in bond with surrounding concrete. In this paper, the effective surface deformation height of GFRP rebar with ribs was determined based on experimental and numerical results.

  • PDF

Design and Experiments of Pneumatic Tactile Display for Haptic Interaction (햅틱 인터렉션을 위한 공기촉감 제시장치의 개발 및 실험 - 손끝 부착 형 공기촉감 제시장치의 개발 및 심리 물리학적 실험 -)

  • Kim, Yeong-Mi;Oakley, Ian;Ryu, Je-Ha
    • Journal of the HCI Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.19-26
    • /
    • 2006
  • This paper presents a novel pneumatic tactile display that can deliver some useful information. The air-jet display forms 5 by 5 arrays and features air nozzles with an external diameter of 2.4mm and internal diameter of 1.5 mm. In comparison with other tactile displays such as vibrotactile, there is little concrete psychophysical data relating to pneumatic displays, a fact which hinders their adoption. This paper addresses this challenge, and presents brief psychophysical studies examining localization rate, the two point threshold, stimulus intensity and the temporal threshold of cues produced by pneumatic air jets. Two groups of subjects were used in these studies, subsequently termed groups A and B. Both were comprised of eight participants. In the case of localization study we obtained 58.13% and 85.9% of localization rates each for dense display and sparse display. Two-points threshold test showed the length of gap between two air-jet stimuli which subjects can detect. However, it was formidable to find out precise temporal resolution of PTI owing to the limitation of capability of the pneumatic valves. Lastly, the results of stimulus intensity study suggest that by varying the size of a pneumatically created tactile stimulus, we can effectively vary its perceived magnitude.

  • PDF

Mechanical Properties and Field Implementation of Floor Mortar Incorporated with VAE Polymer (VAE 폴리머를 이용한 모르타르 바닥재의 역학적 특성과 현작 적용성)

  • Bang, Jin-Wook;Lee, Sun-Mok;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.27-34
    • /
    • 2017
  • Recently, the importance of the industrial warehouse floor has been increasing due to the development of the distribution and logistics industry. In this present study, an early-hardening polymer floor mortar which can compensate for the limitation of conventional cement based floor mortar regarding fluidity and long curing time was developed. In order to achieve the early-hardening of mortar characteristic ultra rapid hardening cement was used as binder. Four types of mixture proportions in accordance with the vinyl acetate ethylene(VAE) polymer contents with range from 10% to 20% and the other proto proportion without VAE polymer were designed. Mechanical experiments including the fluidity test, compressive strength test, bending test, bond test, and abrasion test were conducted for all mixture proportions. From the flow test result, it was possible to achieve the high flow with 250 mm by controlling the amount of superplasticizer. The incorporation of VAE polymer was found to affect the compressive strength reduction, however, the flexural strength was higher than that of the proto mixture, and it was evaluated to increase the compressive strength / flexural strength ratio. Moreover, at least 2.6 times higher bond strength and more than 4 times higher abrasion resistance were secured. From the mechanical experiments results, the optimum mixing ratio of the VAE polymer was determined to be 10%. As a result of application and monitoring, it shows that it has excellent resistance to cracking, discoloration, impact, and scratch as well as bond performance compared to the cement based floor mortar.

An Experimental Study on the Evaluation of Early-Age Mechanical Properties of Polymer-Based Thin Spray-on Liners (폴리머 기반 박층 라이너의 초기재령 특성 평가를 위한 실험적 연구)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Park, Young-Taek;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.413-427
    • /
    • 2013
  • Thin Spray-on Liners(TSLs) based on polymer materials have been considered as an alternative to shotcrete and wire mesh in relatively fair rock conditions, and used in mines since 1990s. Nevertheless, Few experimental studies on their mechanical properties necessary for the evaluation of their bearing capacities as a support member have been carried out. In this study, tensile and bond strengths of two kinds of TSLs with different material compositions were measured at the age of 7 days. In addition, two kinds of bending tests proposed by EFNARC (2008) to simulate representative failure mechanisms of TSLs were carried out on the same materials and curing age as in tension and pull-out tests. From the tests, tensile strength of a TSL is shown to increase as its content of polymer is higher. In contrast, its bond strength seems to be in inverse proportion to its polymer content. Especially, the TSL material in which a cementitious component is included with relatively smaller polymer content shows a faster hardening characteristic which results in higher resistance to de-bonding between a TSL and a substrate. As a result, it is shown that the performance of TSLs might be dependent upon its corresponding polymer content.

A Study on Concentration and Application Time of Lithium Sulfate-Contained Polyacrylic Acid for Adequate Crystal Growth (법랑질 표면에 크리스탈을 형성시키기 위해 사용한 황산리튬이 함유된 폴리아크릴산의 농도와 적용시간에 관한 연구)

  • Roh, Joung-Sub;Kim, Sang-Cheol;Tae, Ki-Chul
    • The korean journal of orthodontics
    • /
    • v.28 no.6 s.71
    • /
    • pp.947-954
    • /
    • 1998
  • The purpose of this study was to compare shear bonding strengths and debonding patterns of the ceramic brackets attached on the crystal which were grown on the enamel surface of a tooth with different concentrations of lithium sulphate-contained polyacrylic acid in different application times. Four kinds of concentrations of mixed solutions were made and applied to the enamel surface on extracted human premolars. The solutions were made by adding 0.3M or 0.6M of lithium sulfate to $50\%\;or\;65\%$ of polyacrylic acid with 0.3M sulfuric acid. The solutions were applied for 30 or 60 seconds. After bonding, a universal testing machine was used to measure the shear bond strength, and then observations were made of debonding patterns through the stereoscope. And the enamel surface was observed through the scanning electron microscope to examine the pattern of crystal growth and debonding. The results were as follows: 1. Shear bond strength in the enamel surface treated with $50\%$ polyacrylic acid was higher than that with $65\%$ polyacrylic acid. 2. There were no statistical differences in shear bond strength according to concentration of lithium sulfate and application time of solutions . 3. Enamel surface was almost free of resin debris after debonding. 4. Enamel surface treated with $50\%$ polyacrylic acid showed higher density of crystal growth than that with $65\%$ polyacrylic acid under scanning electron microscope.

  • PDF

Nonlinear Flexural Analysis of RC Beam Rehabilitated by Very-Early Strength Latex-Modified Concrete (초속경 라텍스개질 콘크리트로 보강된 RC보의 비선형 휨해석)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Yong-Bin;Kang, Mun-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4635-4642
    • /
    • 2010
  • Latex modification of concrete provides the material with higher flexural strength, as well as high bond strength and reduced water permeability. One of the most advantages of the very early-strength latex-modified concrete (VES-LMC) could be the similar contraction and expansion behaviour to normal concrete substrate, which enable to ensure long-term performance. The purpose of this study was to parametric nonlinear flexural nonlinear analysis of RC beam rehabilitated by VES-LMC. The results were as follows; The flexural nonlinear analysis model of RC beam overlaid by VES-LMC in ABAQUS was proposed to predict the load-deflection response, interfacial stress, and ultimate strength. The proposed FE analysis model was verified by comparison of an experimental data and the FE analysis results. The FE analysis results showed that yield point as well as flexural stiffness increased as the depth increased; the stiffness of beam overall increased as the bond stiffness became larger; the bond strength between two different materials is a key factor in composite beam. A parametric study showed that an overlay thickness was a main influencing factor to the behavior of RC beam overlaid by VES-LMC.